

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

Spin-Weighted Spherical Harmonics for Polarized Light Transport

SHINYOUNG YIDONGGUN KIMJIWOONG NAXIN TONGMIN H. KIM

Polarization in Stokes parameters

total intensity

linear polarization (horizontal / vertical)

linear polarization (diagonal / antidiagonal)

circular polarization

Twice rotation property

Problem: we need frames for each ray

Motivation

Spherical harmonics (SH) work well for scalar intensity

SH do not work for polarized light

The frame matters

Why SH work well for scalar intensity?

Overview

Why spherical harmonics (SH) work well for scalar intensity?

- Rotation invariance
- Convolution into elementwise product

SH do not work for polarized light

X No rotation invariance

Our polarized SH work for polarized light

- Rotation invariance
- Convolution into nearly elementwise product

Contribution

Polarized spherical harmonics theory

Real-time polarized rendering

Intensity (s_0)

Rendered under a polarized environment map

Polarized spherical harmonics

Polarized SH

Polarized spherical harmonics

Polarized SH

Polarized spherical harmonics

Polarized SH

Rotation invariance for Stokes vectors

Rotation invariance for Stokes vectors

Scalar spherical convolution

Polarized spherical convolution?

If *f* becomes a **Stokes vector field**.... What should *k* become? Scalar? Stokes vector? Mueller matrix?

Scalar spherical convolution

= Rotation equivariant linear operator

Polarized spherical convolution

Kernels belong to only subspaces → Efficient elementwise product

Polarized spherical convolution

Frequency domain

Nearly elementwise product!

Real-time polarized rendering

111 fps

Intentisy (s_0)

Degree of Polarization

Angle of Linear Polarization

Ablation: Frequency domain operations

Low order Rotation & Rendering equation + Shadow (Pointwise product) + High order (Convolution)

Efficiency of convolution approximation

offline (Mitsuba3)

Ground truth

480 fps

I ≤ 4

210 fps

l ≤ 5

308 fps

 $l \le 4$ convolution approx. for $5 \le l \le 9$

Intensity (s_0)

Conclusion and future work

Precomputed polarized radiance transfer

Future work

- Extend more techniques for SH to PSH
 - Polygonal area [Wang'18]
 - Fast triple product [Xin'21]
 - Removing ringing artifact [Sloan' 17]
- More applications
 - Polarized radiance fields (NeRF-like)
 - Spherical CNN for polarized light

THE PREMIER CONFERENCE 8 EXHIBITION ON COMPUTER GRAPHICS 8 INTERACTIVE TECHNIQUES

THANK YOU

Visit our project page

https://vclab.kaist.ac.kr/siggraph2024

