
Extreme View Synthesis

Inchang Choi1,2 Orazio Gallo1 Alejandro Troccoli1 Min H. Kim2 Jan Kautz1
1NVIDIA 2KAIST

Zhou et al. Ours

1×

Input Cameras

30×

Extrapolated RightExtrapolated Left

Zhou

Figure 1: We propose a novel view synthesis method that can generate extreme views, i.e., images synthesized from a small
number of cameras (two in this example) and from significantly different viewpoints. In this comparison with the method
by Zhou et al. [34], we show the left view from the camera setup depicted above. Even at a 30× baseline magnification our
method produces sharper results.

Abstract

We present Extreme View Synthesis, a solution for novel
view extrapolation that works even when the number of in-
put images is small—as few as two. In this context, occlu-
sions and depth uncertainty are two of the most pressing
issues, and worsen as the degree of extrapolation increases.
We follow the traditional paradigm of performing depth-
based warping and refinement, with a few key improve-
ments. First, we estimate a depth probability volume, rather
than just a single depth value for each pixel of the novel
view. This allows us to leverage depth uncertainty in chal-
lenging regions, such as depth discontinuities. After using
it to get an initial estimate of the novel view, we explicitly
combine learned image priors and the depth uncertainty to
synthesize a refined image with less artifacts. Our method is
the first to show visually pleasing results for baseline mag-
nifications of up to 30×. The code is available at https:
//github.com/NVlabs/extreme-view-synth

1. Introduction
The ability to capture visual content and render it from

a different perspective, usually referred to as novel view

synthesis, is a long-standing problem in computer graphics.
When appropriately solved, it enables telepresence applica-
tions such as head-mounted virtual and mixed reality, and
navigation of remote environments on a 2D screen—an ex-
perience popularized by Google Street View. The increas-
ing amount of content that is uploaded daily to sharing ser-
vices offers a rich source of data for novel view synthesis.
Nevertheless, a seamless navigation of the virtual world re-
quires a more dense sampling than these sparse observations
offer. Synthesis from sparse views is challenging, in partic-
ular when generating views creating disocclusions, a com-
mon situation when the viewpoint is extrapolated, rather
than interpolated, from the input cameras.

Early novel view synthesis methods can generate new
images by interpolation either in pixel space [4], or in ray
space [20]. Novel views can also be synthesized with meth-
ods that use 3D information explicitly. A typical approach
would use it to warp the input views to the virtual camera
and merge them based on a measure of quality [1]. The ad-
vantage of such methods is that they explicitly leverage geo-
metric constraints. Depth, however, does not come without
disadvantages. First and foremost is the problem of occlu-
sions. Second, depth estimation is always subject to a de-

1

https://github.com/NVlabs/extreme-view-synth
https://github.com/NVlabs/extreme-view-synth

gree of uncertainty. Both of these issues are further exacer-
bated when the novel view is pushed farther from the input
camera, as shown in Figure 2. Existing methods deal with
uncertainty by propagating reliable depth values to simi-
lar pixels [2], or by modeling it explicitly [24]. But these
approaches cannot leverage depth to refine the synthesized
images, nor do they use image priors to deal with the un-
avoidable issues of occlusions and artifacts.

More recent approaches use large data collections and
learn the new views directly [7, 34]. The power of learning-
based approaches lies in their ability to leverage image
priors to fill missing regions, or correct for poorly recon-
structed ones. However, they still cause artifacts when the
position of the virtual camera differs significantly from that
of the inputs, in particular when the inputs are few.

In their Stereo Magnification work, Zhou et al. cleverly
extract a layered representation of the scene [34]. The lay-
ers, which they learn to combine into the novel view, offer
a regularization that allows for an impressive stereo base-
line extrapolation of up to 4.5×. Our goal is similar, in that
we want to use as few as two input cameras and extrapo-
late a novel view. Moreover, we want to push the baseline
extrapolation much further, up 30×, as shown in Figure 1.
In addition, we allow the virtual camera to move and rotate
freely, instead of limiting to translations along the baseline.

At a high level, we follow the depth-warp-refine
paradigm, but we leverage two key insights to achieve such
large extrapolation. First, depth estimation is not always re-
liable: instead of exact depth estimates, we use depth prob-
ability volumes. Second, while image refinement networks
are great at learning generic image priors, we also use ex-
plicit information about the scene by sampling patches ac-
cording to the depth probability volumes. By combining
these two concepts, our method works for both view inter-
polation and extreme extrapolation. We show results on a
large number of examples in which the virtual camera sig-
nificantly departs from the original views, even when only
two input images are given. To the best of our knowledge,
ours is the first method to produce visually pleasing results
for such extreme view synthesis from unstructured cameras.

2. Related Work
Early methods for novel view synthesis date back several

decades [9]. Image interpolation methods, among the first
approaches to appear, work by interpolating between corre-
sponding pixels from the input images [4], or between rays
in space [20]. The novel view can also be synthesized as
a weighted combination of the input cameras, when infor-
mation about the scene geometry is available [1, 6]. All of
these methods generally assume additional information—
correspondences, depth, or geometry—to be given.

Recent methods produce excellent results taking only
images as an input. This can be done, for instance, by

(a) (b) (c) (d)

Figure 2: (a) A point cloud and three cameras. (b)-(d) The
images “captured” from the red, green, and the blue cam-
eras. The point cloud was generated from the depth map of
the red camera. Depth uncertainty causes larger artifacts as
the viewpoint moves farther from the red camera.

using an appropriate representation of the scene, such as
plane sweep volumes, and by learning weights to merge
them down into a single image [7]. Further building on the
concept layered depth images [10], Zitnick et al. developed
a high-quality video-based rendering system for dynamic
scenes that can interpolate between views [36]. Zhou et al.
propose a learned layer-based representation of the scene,
dubbed MPI [34]. Their results are impressive, but quickly
degrade beyond limited translations of the novel view. The
works of Mildenhall et al. [23] and Srinivasan et al. [27]
build on the MPI representation further improving the qual-
ity of the synthesized view, even for larger camera transla-
tions1.

A different approach is to explicitly use depth informa-
tion, which can be estimated from the input images directly,
and used to warp the input images into the novel view.
Kalantari et al., for instance, learn to estimate both disparity
and the novel view from the sub-aperture images of a light-
field camera [14]. For larger displacements of the virtual
camera, however, depth uncertainty results in noticeable ar-
tifacts. Chaurasia et al. take accurate but sparse depth and
propagate it using super-pixels based on their similarity in
image space [2]. Penner and Zhang explicitly model the
confidence that a voxel corresponds to empty space or to a
physical surface, and use it while performing back-to-front
synthesis of the novel view [24].

The ability of deep learning techniques to learn priors
has also paved the way to single-image methods. Srini-
vasan et al. learn a light field and depth along each ray
from a single image [28]. Zhou et al. cast this problem as a
prediction of appearance flows, which allows them to syn-
thesize novel views of a 3D object or scene from a single
observation [35]. From a single image, Xie et al. produce
stereoscopic images [32], while Tulsiani et al. infer a lay-
ered representation of the scene [29].

Our approach differs from published works for its abil-
ity to generate extrapolated images under large viewpoint
changes and from as few as two cameras.

1These works were published after the submission of this paper and are
included here for a more complete coverage of the state-of-the-art.

Source cameras Virtual
camera

Input views
and cameras

(a)

Multi-
view depth
estimation

Initial novel view
synthesis

(d)

Refined novel view
synthesis

(e)

Depth probability
volumes

(b)

Novel view
depth probability

(c)

Warping
and

fusing

Novel
view

synthesis

Novel
view

refinement

: candidate patches

Figure 3: Method overview: from a set of posed input views (a), we generate a set of depth probability volumes for each
view (b). Given the novel view camera pose, we create its depth probability volume via warping and fusion of the input depth
volumes (c). Next, we synthesize an initial novel view (d), which we refine with a neural network to synthesize the final
image (e). Our image refinement is done in a patch-based manner guided by the depth distribution.

3. Overview

Our goal is to synthesizes a novel view, INV, from N in-
put views, Ii. A common solution to this problem is to es-
timate depth and use it to warp and fuse the inputs into the
novel view. However, depth estimation algorithms struggle
in difficult situations, such as regions around depth discon-
tinuities; this causes warping errors and, in turn, artifacts
in the final image. These issues further worsen when N is
small, or INV is extrapolated, i.e., when the virtual cam-
era is not on the line connecting the centers of any two in-
put cameras. Rather than using a single depth estimate for
a given pixel, our method accounts for the depth’s proba-
bility distribution, which is similar in spirit to the work of
Liu et al. [22]. We first estimate N distributions Di, one
per input view, and combine them to estimate the distribu-
tion for the virtual camera, DNV, Section 4. Based on the
combined distribution DNV, we render the novel view back
to front, Section 5. Finally, we refine INV at the patch level
informed by relevant patches from the input views, which
we select based on the depth distribution and its uncertainty,
Section 6. Figure 3 shows an overview of the method.

4. Estimating the Depth Probability Volume

Several methods exist that estimate depth from multiple
images [15, 8], stereo pairs [16, 17], and even single im-
age [21, 25]. Inspired by the work of Huang et al., we treat
depth estimation as a learning-based, multi-class classifi-
cation problem [12]. Specifically, depth can be discretized
into nd values and each depth value can be treated as a class.
Depth estimation, then, becomes a classification problem:
each pixel (xi, yi) in Ii can be associated with a probability
distribution over the nd depth values along Ri(xi, yi), the
ray leaving the camera at (xi, yi) and traversing the scene.
We refer to the collection of all the rays for camera i as a

depth probability volume, Di ∈ Rh×w×nd , where h × w is
the resolution of Ii. The network to estimate the Di’s, can
be trained with a cross-entropy loss against ground truth
one-hot vectors that are 1 for the correct class and 0 else-
where, as in Huang et al. [12]. We follow the common
practice of uniformly sampling disparity instead of depth2

to improve the estimation accuracy of closer objects.
Empirically, we observe that the resulting depth volumes

exhibit desirable behaviors. For most regions, the method
is fairly certain about disparity and the probability along
Ri(x, y) presents a single, strong peak around the cor-
rect value. Around depth discontinuities, where the point-
spread-function of the lens causes pixels to effectively be-
long to both foreground and background, the method tends
to produce a multi-modal distribution, with each peak cor-
responding to the disparity levels of the background and
foreground, see for instance Figure 4. This is particularly
important because depth discontinuities are the most chal-
lenging regions when it comes to view synthesis.

Solving for the depth probability volumes requires that
we know the location and the camera’s intrinsic parameters
for each input view. We estimate these using Colmap [26].
For a given scene, we set the closest and farthest dispar-
ity levels as the bottom 2 and top 98 depth percentiles re-
spectively, and use nd = 100 uniformly spaced disparity
steps. Similarly to the method of Huang et al., we also
cross-bilateral filter the depth probability volume guided by
an input RGB image [19]. However, we find θα = 25,
θβ = 10, and µ = 5 to work better for our case and iterate
the filter for 5 times. We refer the reader to Krähenhühl and
Koltun for the role of each parameter [19].

Finally, we can estimate the probability volume DNV for

2Technically, “disparity” is only defined in the case of a stereo pair.
Here we use the term loosely to indicate a variable that is inversely propor-
tional to depth.

Figure 4: Depth probability distributions along three rays
in D. The disparity shows clear peaks for points that are
sufficiently distant from a depth discontinuity. Closer to the
edge, the inherent uncertainty is captured by the presence of
two lower peaks: one corresponding to the foreground, and
one to the background.

D1 D1DNV DNV DNV
D2 DNV DNV

Figure 5: To compute the depth probability volume with re-
spect to the novel view, we resample the input volumes and
accumulate them. Here we only look at a planar slice of
the depth probability volumes, and we make the simplify-
ing assumption that the input volumes have p = 1 for one
disparity and p = 0 for all the others. Note that the proba-
bility along the rays in the final result do not sum to 1 and,
therefore require an additional normalization.

the novel view by resampling these probability volumes.
Conceptually, the probability of each disparity d for each
pixel (x, y), DNV(x, y, d), can be estimated by finding the
intersecting rays Ri’s from the input cameras and average
their probability. This, however, is computationally de-
manding. We note that this can be done efficiently by re-
sampling the Di’s with respect to DNV, accumulating each
of the Di volumes into the novel view volume, and normal-
izing by the number of contributing views. This accumula-
tion is sensible because the probability alongRi is a proper
distribution. This is in contrast with traditional cost vol-
umes [11] for which costs are not comparable across views:
the same value for the cost in two different views may
not indicate that the corresponding disparities are equally
likely to be correct. Depth probability volumes also resem-
ble the soft visibility volumes by Penner and Zhang [24].
However, their representation is geared towards identifying
empty space in front of the first surface. Therefore, they
behave differently in regions of uncertainty, such as depth
discontinuities, where depth probability volumes carry in-
formation even beyond the closest surface.

Figure 5 shows an example of the resampling procedure,
where we consider only a planar slice of the volumes and,
for simplicity, that the probability along the input rays is bi-
nary. We use nearest neighbor sampling, which, based on

our experiments, yields quality comparable with tri-linear
interpolation at a fraction of the cost. After merging all
views, we normalize the values along each ray in DNV to
enforce a probability distribution.

5. Synthesis of a Novel View
Using the depth probability volume DNV, we backward

warp pixels from the inputs Ii and render in a back-to-front
fashion an initial estimate of the novel view, ĨNV. Specif-
ically, we start from the farthest plane, where d = 0, and
compute a pixel in the novel view as

ĨNV(x, y)
∣∣∣
d=0

= R
({
Ii(xi, yi) · 1{DNV(x,y,0)>t}

}
i=1:N

)
,

(1)
where 1 is the indicator function, and (xi, yi) are the co-
ordinates in Ii that correspond to (x, y) in ĨNV. Note that
these are completely defined by the cameras’ centers and
the plane at d. R is a function that merges pixels from Ii
weighting them based on the distance of the cameras’ cen-
ters, and the angles between the cameras’ principal axes.
Details about the threshold t and the weights are in the Sup-
plementary. As we sweep the depth towards a larger dispar-
ity d, i.e., closer to the camera, we overwrite those pixels
for which DNV(x, y, d) is above threshold3.

The resulting image ĨNV will, in general, presents arti-
facts and holes, see Figure 6(a). This is expected, since we
are rejecting depth estimates that are too uncertain, and we
overwrite pixels as we sweep the depth plane from back to
front. However, at this stage we are only concerned with
generating an initial estimate of the novel view that obeys
the geometric constraints captured by the depth probability
volumes.

6. Image Refinement

The image ĨNV synthesized as described in Section 5 is
generally affected by apparent artifacts, as shown in Fig-
ures 6(a) and (c). Most notably, these include regions that
are not rendered, either because of occlusions or missing
depth information, and the typical “fattening” of edges at
depth discontinuities. Moreover, since we render each pixel
independently, structures may be locally deformed. We ad-
dress these artifacts by training a refinement network that
works at the patch level. For a pixel p in ĨNV, we first
extract a 64 × 64 patch P̃NV around it (for clarity of no-
tation, we omit its dependence on p). The goal of the re-
finement network is to produced a higher quality patch with

3An alternative to overwriting the pixels, is to weigh their RGB values
with the corresponding depth probabilities. However, in our experiments,
this resulted in softer edges or ghosting that were harder to fix for the
refinement network (Section 6.1). We speculate that the reason to be that
such artifacts are more “plausible” to the refinement network than abrupt
and incoherent RGB changes.

(a) (b) (c)

Figure 6: The novel view ĨNV , obtained by just warping the inputs, presents several types of artifacts (a). Our refinement
network uses the depth probability as well as patches from the input images to fix them (b). More examples of synthesized
(top) and refined (bottom) patches are shown in (c).

less artifacts. One could consider the refinement opera-
tion akin to denoising, and train a network to take a patch
P̃NV and output the refined patch, using a dataset of syn-
thesized and ground truth patches and an appropriate loss
function [13, 33]. However, at inference time, this approach
would only leverage generic image priors and disregard the
valuable information the input images carry. Instead, we
turn to the depth probability volume. Consider the case of a
ray traveling close to a depth discontinuity, which is likely
to generate artifacts. The probability distribution along this
ray generally shows a peak corresponding to the foreground
and one to the background, see Figure 4. Then, rather than
fixing the artifacts only based on generic image priors, we
can guide the refinement network with patches extracted
from the input views at the locations reprojected from these
depths. Away from depth discontinuities, the distribution
usually has a single, strong peak, and the synthesized im-
ages are generally correct. Still, since we warp the pixels
independently, slight depth inaccuracy may cause local de-
formation. Once again, patches from the input views can
inform the refinement network about the underlying struc-
ture even if the depth is slightly off.

To minimize view-dependent differences in the patches
without causing local deformations, we warp them with the
homography induced by the depth plane. For a given dis-
parity d = d̄, we compute the warped patch

P̂i,j = W(Pi,j , H
d=d̄
i→NV), (2)

where W(·, H) is an operator that warps a patch based on
homography H , and Hd=d̄

i→NV is the homography induced by
plane at disparity d̄. This patch selection strategy can be
seen as an educated selection of a plane sweep volume [5],
where only the few patches that are useful are fed into the
refinement network, while the large number of irrelevant
patches, which can only confuse it, are disregarded. In the
next section we describe our refinement network, as well as
details about its training.

6.1. Refinement Network

Our refinement strategy, shown in Figure 7, takes a syn-
thesized patch P̃NV and J warped patches P̂i,j from each

input view Ii. The number of patches contributed to each
P̃NV can change from view to view: because of occlusions,
an input image may not “see” a particular patch, or the patch
could be outside of its field of view. Moreover, the depth
distribution along a ray traveling close to a depth disconti-
nuity may have one peak, or several. As a result, we need
to design our refinement network to work with a variable
number of patches.

Network Architecture. We use a UNet architecture for
its proven performance on a large number of vision appli-
cations. Rather than training it on a stack of concatenated
patches, which would lock us into a specific value of J ,
we apply the encoder to each of the available patches inde-
pendently. We then perform max-pooling over the features
generated from all the available patches and we concatenate
the result with the features of the synthesized patch, see Fig-
ure 7. The encoder has seven convolutional layers, four of
which downsample the data by means of strided convolu-
tion. We also use skip connections from the four down-
sampling layers of the encoder to the decoder. Each skip
connection is a concatenation of the features of the synthe-
sized patch for that layer and a max-pooling operation on
the features of the candidate patches at the same layer.

Training. We train the refinement network using the
MVS-Synth dataset [12]. We use a perceptual loss [13] as
done by Zhuo et al. [34], and train with ADAM [18]. More
details about the network and the training are in the Supple-
mentary.

7. Evaluation and Results
In this section we offer a numerical evaluation of our

method and present several visual results. We recommend
to zoom into the images in the electronic version of the pa-
per to better inspect them, and to use a media-enabled PDF
viewer to play the animated figures.

Execution Time. Using two views as an input, the depth
probability volumes take 40s, view synthesis (estimation of

Figure 7: The refinement network takes as input a patch
P̃NV from the synthesized image ĨNV, and a variable num-
ber of warped patches P̂i,j from each input view Ii. All
patches go through an encoder network. The features of the
warped patches are aggregated using max-pooling. Both
feature sets are concatenated and used in the decoder that
synthesizes the refined patch PNV.

the depth volume in the novel view and rendering) takes
30s, and the refinement network takes 28s (all averages).

Synthetic Scenes. Non-blind image quality metrics such
as SSIM [31] and PSNR require ground truth images. For a
quantitative evaluation of our proposed method we use the
MVS-Synth [12] dataset. The MVS-Synth dataset provides
a set of high-quality renderings obtained from the game
GTA-V, broken up into a hundred sequences. For each se-
quence, color images, depth images, and the camera param-
eters for each are provided. The location of the cameras in
each sequence is unstructured. In our evaluation we select
two adjacent cameras as the input views to our method and
generate a number of nearby views also in the sequence.
We then compute the PSNR and SSIM metrics between the
synthesized and ground-truth images.

In addition, we can use the same protocol to compare
against Stereo Magnification (SM) by Zhou et al. [34]. Al-
though SM is tailored towards magnifying the baseline of a
stereo pair, it can also render arbitrary views that are not in
the baseline between the two cameras. We chose to quan-
titatively compare against SM because it also addresses the
problem of generating extreme views, although in a more
constrained setting.

Table 1 shows PSNR and SSIM values for our method
before and after refinement, and for SM. The results show
that the refinement network does indeed improve the quality
of the final result. In addition, the metrics measured on our
method output are higher than those of SM.

Metric Ours Warped Ours Refined SM
Mean SSIM 0.851 0.877 0.842
Mean PSNR 24.6dB 27.38dB 25.49dB

Table 1: Quantitative analysis of our proposed method and
SM. “Ours warped” refers to the images produced by back-
ward warping before refinement,“Ours refined” refers to the
images created by the refinement network, and “SM” refers
to the images created by the method of Zhou et al. [34]

Real Scenes. While sequences of real images cannot be
used to evaluate our algorithm numerically, we can at least
use them for visual comparisons of the results.

We perform a qualitative evaluation and compare against
SM on their own data. In their paper, Zhou et al. show re-
sults when magnifying a stereo baseline by a factor of 4.5×.
While their results are impressive at that magnification, in
this paper we push the envelop to extreme and show results
for 30× magnification of the input baseline.

Figure 1 and 11 show 30× magnification on stereo pairs
of scenes with complicated structure and occlusions. At
this magnification level, the results of Zhou et al. are af-
fected by strong artifacts. Even in the areas that appear to be
correctly reconstructed, such as the head of Mark Twain’s
statue in Figure 11(left), a closer inspection reveals a sig-
nificant amount of blur. Our method generates results that
are sharper and present fewer artifacts. We also compare
against their method at the magnification level they show,
and observe similar results, see Supplementary.

The method by Penner and Zhang arguably produces
state-of-the-art results for novel view synthesis. However,
their code is not available and their problem setting is quite
different in that they focus on interpolation and rely on a
larger number of input cameras than our method. For com-
pleteness, however, we show a comparison against their
method in Figure 12. Our reconstruction, despite using
many fewer inputs, shows a quality that is comparable to
theirs, though it degrades for larger extrapolation.

To validate our method more extensively, inspired by the
collection strategy implemented by Zhou et al. [34], we cap-
ture a number of frame sequences from YouTube videos.

A few of the results are shown in Figure 10. The leftmost
column shows the camera locations for the images shown
on the right. The color of the cameras matches the color
of the frame around the corresponding image, and gray in-
dicates input cameras. We present results for a number of
different camera displacements and scenes, showcasing the
strength of our solution. In particular, the first three rows
show results using only two cameras as inputs, with the vir-
tual cameras being displaced by several times the baseline
between the inputs cameras. The third row shows a dolly-in
trajectory (i.e., the camera moves towards the scene), which
is a particularly difficult case. Unfortunately, it may be

(a) (b) (c)

(d) (e) (f)

Figure 8: Our refinement network leverages information from relevant patches from the input images. Here (a) and (d) are
ĨNV, (b) and (e) are images created by training the network to refine patch only based on image priors, (c) and (f) are our
results, which use the patches P̂i,j . The structure of the roof is sharper in (c) compared to (b) and (a). The kitchen cabinet is
correctly rendered in (f) compared to (d) and (e).

Figure 9: Animation showing the first three scenes in Fig-
ure 10. Requires a media-enabled viewer such as Adobe
Reader. Click on the image to start the animation.

challenging to appreciate the level of extrapolation when
comparing images side by side, even when zooming in.
However, we also show an animated sequence in Figure 9.
To play the sequence, click on the image using a media-
enabled reader, such as Adobe Reader. In the Supplemen-
tary we show additional video sequences and an animation
that highlights the extent of parallax in one of the scenes.

Furthermore, our method can take any number of input
images. The last two rows of Figure 10 show two scenes for
which we used four input cameras.

Refinement Network. We also conduct an evaluation to
show that the use of patches as input to the refinement net-
work does indeed guide the network to produce a better out-
put. Figure 8 shows a comparison between our network and
a network with the same exact number of parameters—the

architecture differs only in the fact that it does not have ad-
ditional patches. It can be observed that the proposed archi-
tecture (Figure 8(c) and Figure 8(f)) can reconstruct local
structure even when the single-patch network (Figure 8(b)
and Figure 8(e)) cannot. Indeed, the refinement network
guided by patches can synthesize pixels in areas that had
previously been occluded.

7.1. Limitations

While the refinement network can fix artifacts and fill in
holes at the disocclusion boundaries, it can not hallucinate
pixels in areas that were outside of the frusta of the input
cameras—that is a different problem requiring a different
solution, such as GAN-based synthesis [30]. The refine-
ment network also struggles to fix artifacts that look natural,
such as an entire region reconstructed in the wrong location.

Finally, because the depth values are discrete, certain
novel views may be affected by depth quantization artifacts.
A straightforward solution is to increase the number of dis-
parity levels (at the cost of a larger memory footprint and
execution time) or adjust the range of disparities to better fit
the specific scene.

8. Conclusions
We presented a method to synthesize novel views from a

set of input cameras. We specifically target extreme cases,
which are characterized by two factors: small numbers of
input cameras, as few as two, and large extrapolation, up
to 30× for stereo pairs. To achieve this, we combine tra-
ditional geometric constraints with the learned priors. We
show results on several real scenes and camera motions, and
for different numbers of input cameras.

Figure 10: Extreme view synthesis on two-camera inputs and on four-camera inputs. For each row the cameras on the left
show the position of the input views (light gray) and virtual views. The color of the pictures’ frames matches the color of the
corresponding camera on the left. The cameras on the left are rendered at the same scale to facilitate a comparison between
the amounts of extrapolation in each case.

SM Ours SM Ours

Figure 11: Comparison with Stereo Magnification for a
30× baseline magnification. While some unavoidable ar-
tifacts are visible in both methods, our results have fewer,
less noticeable artifacts, and are generally sharper. Please
zoom in for the best viewing experience.

Acknowledgments
The authors would like to thank Abhishek Badki for his

help with Figure 10, and the anonymous reviewers for their
thoughtful feedback.

References
[1] Chris Buehler, Michael Bosse, Leonard McMillan, Steven

Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In ACM SIGGRAPH, 2001. 1, 2

(a) (b)

Figure 12: Comparison with Soft3D [24]. (a) A frame
generated by Soft3D, which uses all the cameras in the se-
quence from Chaurasia et al. [3], and a frame generated by
our method using only two input cameras around the middle
of the sequence (b).

[2] Gaurav Chaurasia, Sylvain Duchêne, Olga Sorkine-
Hornung, and George Drettakis. Depth synthesis and local
warps for plausible image-based navigation. In ACM Trans-
actions on Graphics, 2013. 2

[3] Gaurav Chaurasia, Olga Sorkine, and George Drettakis.
Silhouette-aware warping for image-based rendering. In Eu-
rographics Symposium on Rendering, 2011. 8

[4] Shenchang Eric Chen and Lance Williams. View interpo-

lation for image synthesis. In ACM SIGGRAPH, 1993. 1,
2

[5] Robert T Collins. A space-sweep approach to true multi-
image matching. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1996. 5

[6] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Mod-
eling and rendering architecture from photographs: A hybrid
geometry-and image-based approach. In ACM SIGGRAPH,
1996. 2

[7] John Flynn, Ivan Neulander, James Philbin, and Noah
Snavely. DeepStereo: Learning to predict new views from
the world’s imagery. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2016. 2

[8] Silvano Galliani, Katrin Lasinger, and Konrad Schindler.
Massively parallel multiview stereopsis by surface normal
diffusion. In IEEE International Conference on Computer
Vision (ICCV), 2015. 3

[9] Ned Greene. Environment mapping and other applications
of world projections. In IEEE Computer Graphics and Ap-
plications (CGA), 1986. 2

[10] Li-Wei He, Jonathan Shade, Steven Gortler, and Richard
Szeliski. Layered depth images. In ACM SIGGRAPH, 1998.
2

[11] Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten
Rother, and Margrit Gelautz. Fast cost-volume filtering for
visual correspondence and beyond. 2012. 4

[12] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. DeepMVS: Learning multi-view
stereopsis. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 3, 5, 6

[13] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European Conference on Computer Vision (ECCV), 2016. 5

[14] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-
mamoorthi. Learning-based view synthesis for light field
cameras. In ACM Transactions on Graphics (SIGGRAPH),
2016. 2

[15] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning
a multi-view stereo machine. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2017. 3

[16] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In IEEE International Conference on Computer
Vision (ICCV), 2017. 3

[17] Sameh Khamis, Sean Ryan Fanello, Christoph Rhemann,
Adarsh Kowdle, Julien P. C. Valentin, and Shahram Izadi.
StereoNet: Guided hierarchical refinement for real-time
edge-aware depth prediction. In European Conference on
Computer Vision (ECCV), 2018. 3

[18] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 5

[19] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected CRFs with Gaussian edge potentials. In
Advances in Neural Information Processing Systems (NIPS).
2011. 3

[20] Marc Levoy and Pat Hanrahan. Light field rendering. In
ACM SIGGRAPH, 1996. 1, 2

[21] Zhengqi Li and Noah Snavely. MegaDepth: Learning single-
view depth prediction from internet photos. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2018. 3

[22] Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa G Narasimhan,
and Jan Kautz. Neural RGB → D sensing: Depth and uncer-
tainty from a video camera. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 3

[23] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. In ACM Trans-
actions on Graphics (SIGGRAPH), 2019. 2

[24] Eric Penner and Li Zhang. Soft 3D reconstruction for view
synthesis. In ACM Transactions on Graphics (SIGGRAPH),
2017. 2, 4, 8

[25] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learn-
ing depth from single monocular images. In Advances in
Neural Information Processing Systems (NIPS), 2006. 3

[26] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 3

[27] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 2

[28] Pratul P Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi
Ramamoorthi, and Ren Ng. Learning to synthesize a 4D
RGBD light field from a single image. In IEEE International
Conference on Computer Vision (ICCV), 2017. 2

[29] Shubham Tulsiani, Richard Tucker, and Noah Snavely.
Layer-structured 3D scene inference via view synthesis. In
European Conference on Computer Vision (ECCV), 2018. 2

[30] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional GANs. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 8798–8807, 2018. 7

[31] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-
celli, et al. Image quality assessment: From error visibility
to structural similarity. In IEEE Transactions on Image Pro-
cessing (TIP), 2004. 6

[32] Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3D: Fully
automatic 2D-to-3D video conversion with deep convolu-
tional neural networks. In European Conference on Com-
puter Vision (ECCV), 2016. 2

[33] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss
functions for image restoration with neural networks. In
IEEE Transactions on Computational Imaging (TCI), 2017.
5

[34] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo Magnification: Learning view
synthesis using multiplane images. In ACM Transactions on
Graphics (SIGGRAPH), 2018. 1, 2, 5, 6

[35] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-
lik, and Alexei A Efros. View synthesis by appearance flow.
In European Conference on Computer Vision (ECCV), 2016.
2

[36] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uytten-
daele, Simon A. J. Winder, and Richard Szeliski. High-
quality video view interpolation using a layered representa-
tion. In ACM Transactions on Graphics (SIGGRAPH), 2004.
2

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	anm0:

