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1. Subdivision Scheme Comparison

There are three well-known Class 1 subdivision schemes
of the spherical geodesic grid by intersecting equal-chord,
mid-arc, and equal-arc reference points. Equal-arc and equal-
chord reference points are defined on the edges of the spher-
ical PPT and the planner PPT, respectively (see Figure 1b).
Three different methods are:

• The equal-chord-based spherical geodesic grid (pa0∼4 )
is obtained by projecting intersection grid points
(pc0∼4) generated by connecting the equal-chord ref-
erence points with straight lines. The equal-chord ap-
proach results in unequal arc lengths between edge
reference points when projected to the sphere’s surface.
It is an equally subdivided grid in projected plane and a
distorted grid in spherical plane (Pc0∼4 6= Pa0∼4 ).

• The mid-arc spherical geodesic grid is obtained by iter-
ative projection of midpoints of the planar PPT’s edges
on a sphere. This method is the most frequently used
subdivision scheme because of its intuitively simple
implementation in the 3D world [1–5]. However, there
are no similar triangles on the spherical geodesic grid
because of the iterative subdivision of pentagons and
hexagons, and the level of subdivision is limited as pow-
ers of two. Above all, because the grid is constructed
based on the hierarchical triangles created by iterative
subdivision, we have to calculate and save all the 3D
coordinates of cells for the spherical geodesic grid.

• The equal-arc subdivision method is based on equal-arc
reference points. Three great circles are intersected, but
they do not meet at a single point. Instead, they meet
at three different points on the spherical PPT. Centroid
points of small triangles made by three points are pro-
jected to the surface of the sphere (Figure 1b). The
equal-arc-based spherical geodesic grid is known to be
an almost uniform grid because in-between distance
and area of cells are almost the same when using a suf-
ficiently large subdivision level (Pa0∼4). As shown in
Figure 1a, the equal-arc subdivision needs an iterative
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Figure 1. (a) Equal-arc subdivision on the spherical PPT. Three
great arcs that are parallel to the edges of the PPT do not meet in a
point. A centroid point of the triangle is defined as a vertex of the
geodesic grid. (b) The transformation method of the geodesic grid
using equal-arc subdivision. There is no formulated relationship
but a projection algorithm using a neighboring relative position of
pixels on each grid plane.

process of taking centroid points of intersecting triangu-
lar points. Therefore pre-calculated LUT is needed to
define a projected spherical to planar correspondence.

2. Additional Results
Figure 2 qualitatively compares more synthetic results of our
method with those of the LL-based stereo matching. Com-
pared with the ground truth maps, our method outperforms
the LL-based stereo matching method particularly near pole
regions at the leftmost and rightmost ends, showing less
disparity errors and noise.
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Figure 2. Results of four synthetic datasets. Left-top is the left image of fisheye stereo; left-bottom is the ratio of error pixels by 10-pixel-step
in x-axis; GT disparity map; LL-based disparity map; Our disparity map; Comparison of disparity results at two identical positions.
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