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Abstract. The primary challenge for removing haze from a single image
is lack of decomposition cues between the original light transport and
airlight scattering in a scene. Many dehazing algorithms start from an
assumption on natural image statistics to estimate airlight from sparse
cues. The sparsely estimated airlight cues need to be propagated accord-
ing to the local density of airlight in the form of a transmission map,
which allows us to obtain a haze-free image by subtracting airlight from
the hazy input. Traditional airlight-propagation methods rely on ordi-
nary regularization on a grid random field, which often results in iso-
lated haze artifacts when they fail in estimating local density of airlight
properly. In this work, we propose a non-local regularization method
for dehazing by combining Markov random fields (MRFs) with nearest-
neighbor fields (NNFs) extracted from the hazy input using the Patch-
Match algorithm. Our method starts from the insightful observation
that the extracted NNFs can associate pixels at the similar depth. Since
regional haze in the atmosphere is correlated with its depth, we can allow
propagation across the iso-depth pixels with the MRF-based regulariza-
tion problem with the NNFs. Our results validate how our method can
restore a wide range of hazy images of natural landscape clearly without
suffering from haze isolation artifacts. Also, our regularization method
is directly applicable to various dehazing methods.
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1 Introduction

The atmosphere in a landscape includes several types of aerosols such as haze,
dust, or fog. When we capture a landscape photograph of a scene, often thick
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aerosols scatter light transport from the scene to the camera, resulting in a
hazy photograph. A haze-free image could be restored if we could estimate and
compensate the amount of scattered energy properly. However, estimating haze
from a single photograph is a severely ill-posed problem due to the lack of the
scene information such as depth.

An image processing technique that removes a layer of haze and compensates
the attenuated energy is known as dehazing. It can be applied to many out-
door imaging applications such as self-driving vehicles, surveillance, and satellite
imaging. The general dehazing algorithm consists of two main processes. We first
need to approximate haze initially by utilizing available haze clues based on a
certain assumption on natural image statistics, such as a dark channel prior [2].
In this stage, most of dehazing algorithms tend to produce an incomplete trans-
mission map from the hazy image. Once we obtain rough approximation of haze,
we need to propagate the sparse information to the entire scene to reconstruct
a dense transmittance map used for recovering a haze-free image.

Difficulty of dehazing arises from the existence of ambiguity due to the lack of
the scene information. First, the initial assumption on image statistics on natural
colors in particular is insufficient to cover the wide diversity of natural scenes
in the real world, resulting in incomplete haze estimation. No universal image
statistics on natural colors can handle the dehazing problem. Moreover, as shown
in Fig. 1, state-of-the-art propagation algorithms with a common grid random
field often suffer from haze-isolation artifacts [3–5]. Meanwhile, the amount of
haze in the atmosphere at each pixel is determined by its depth. In order to
handle abrupt changes of haze density, we need the scene depth information,
even though it is unavailable in single-image dehazing.

In this paper, we propose a non-local regularization method for dehazing that
can propagate sparse estimation of airlight to yield a dense transmission map
without suffering from the typical isolation problem (Fig. 1). Our regularization
approach is developed by combining Markov random fields (MRFs) with nearest-
neighbor fields (NNFs) using the PatchMatch algorithm [6]. Our main insight is
that the NNFs searched in a hazy image associate pixels at the similar depth.
Since no depth information is available in single-image dehazing, we utilize the
NNF information to infer depth cues by allowing non-local propagation of latent
scattered light, which is exponentially proportional to depth [7]. To the best of
our knowledge, this approach is the first work that combines MRF regularization
with NNFs for dehazing. This proposed regularization method can be used with
any other dehazing algorithms to enhance haze regularization.

2 Related Work

Previous works on dehazing can be grouped into three categories: multiple image-
based, learning-based and single image-based approaches.

Multiple Image-Based Dehazing. Since removing haze in the atmosphere is
an ill-posed problem, several works have attempted to solve the problem using
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Fig. 1. Comparison of dehazing results using (a) regularization of haze using traditional
MRFs commonly used in state-of-the-art dehazing algorithms [3–5] and (b) our regu-
larization using MRFs with iso-depth NNFs (Insets: corresponding transmission maps).
The proposed method for single-image dehazing can propagate haze more effectively
than traditional regularization methods by inferring depth from NNFs in a hazy image.
Images courtesy of Kim and Kim [1]. (Color figure online)

multiple input images, often requiring additional hardware. Schechner et al. cap-
ture a set of linearly polarized images. They utilize the intensity changes of the
polarized lights to infer the airlight layer [8]. Narasimhan et al. [7,9] employ
multiple images with different weather conditions to restore the degraded image
using an irradiance model. Kopf et al. [10] remove haze from an image with
additionally known scene geometry, instead of capturing multiple images. These
haze formation models stand on the physics of light transport to provide sound
accuracy. However, these applications could be limited at the cost of acquiring
multiple input images.

Learning-Based Dehazing. Learning-based methods have been proposed
to mitigate the ill-posed dehazing problem using a trained prior knowledge.
From training datasets, they attempt to earn a prior on natural image statis-
tics to factorize the haze layer and the scene radiance from the hazy image.
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Tang et al. [11] define haze-relevant features that are related to the properties of
hazy images, and train them using the random forest regression. Zhu et al. [12]
obtain the color attenuation prior using supervised learning. They found that
the concentration of haze is positively correlated with the difference between
brightness and saturation, and they train a linear model via linear regression.
However, no general statistical model can predict the diverse distributions of
natural light environments; hence, they often fail to restore hazy-free images
that are not similar to the trained dataset.

Single Image-Based Dehazing. Owing to the ill-posedness of the dehazing
problem, single image-based methods commonly rely on a certain assumption
on statistics of natural images. Most prior works have made an assumption on
the statistics of natural scene radiance [2,4,13–16]. Tan [13] and Tarel and Hau-
tiere [14] restore visibility by maximizing local contrast, assuming that clean
color images have a high contrast, but this causes overly saturated results. He
et al. [2] exploit image statistics where a natural image in the sRGB color space
should include a very low intensity within a local region. However, it often over-
estimates the amount of haze if there is a large area having bright pixels. Nishino
et al. [15] employ scene-specific priors, a heavy-tailed distribution on chromatic-
ity gradients of colors of natural scenes, to infer the surface albedo, but they
also often produce over-saturated results.

Developing the natural image prior further, Fattal [4] assumes that in the
sRGB space, the color-line of a local patch within a clear image should pass
through the origin of the color space. This can yield a clear and naturally-looking
result, but it requires per-image tweaking parameters such as the gamma value
and the manual estimation of the atmospheric light vector. Li et al. [17] suggest a
nighttime dehazing method that removes a glow layer made by the combination
of participating media and light source such as lamps. Recently, a non-local
transmission estimation method was proposed by Berman et al. [5], which is
based on the assumption that colors of a haze-free image can be approximated
by a few hundred distinct colors forming tight clusters in the RGB space.

In addition, an assumption on light transport in natural scenes is also used.
Fattal assumes that shading and transmission are statistically independent [3],
and Meng et al. [18] impose boundary conditions on light transmission. In partic-
ular, our airlight estimation follows the traditional approach based on dimension-
minimization approach [3], which allows for robust performance in estimating
airlight.

Haze Regularization. Most single-image dehazing methods estimate per-pixel
haze using a patch-wise operator. Since the operator often fails in a large portion
of patches in practice, regularizing sparse haze estimates is crucial to obtain a
dense transmission map for restoring a haze-free image. Grid Markov random
fields are most commonly used in many dehazing algorithms [3,5,13,15,19], and
filtering methods are also used, for instance, matting Laplacian [2], guided fil-
tering [20], and a total variation-based approach [14,18]. These regularization
methods only account for local information, they often fail to obtain sharp depth-
discontinuity along edges if there is an abrupt change in scene depth.
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Recently, Fattal [4] attempts to mitigate this isolation problem by utilizing
augmented Markov random fields, which extend connection boundaries of MRFs.
However, this method does not search neighbors in every region in an image since
only pixels within a local window are augmented. For this reason, the augmented
MRFs cannot reflect all non-local information in the image, and in some cases,
isolation artifacts still remain. Berman et al. [5] non-locally extend the boundary
in estimating haze; however, they still regularize an initial transmission map by
using Gaussian MRFs (GMRFs) with only local neighbors. As a result, severe
isolation problems occur in a region where there is an abrupt change of scene
depth. In our regularization method, we extend neighbors in MRFs with NNFs
to allow non-local propagation across iso-depth pixels to obtain sharp edge-
discontinuity when inferring latent transmission values.

3 Initial Estimation of Haze

We first estimate the initial density of haze following a traditional dimension-
reduction approach using linear subspaces [3,7]. To help readers understand the
formulation of the dehazing problem, we briefly provide the foundations of the
traditional haze formation model.

Haze Formation Model. Haze is an aerosol that consists of ashes, dust, and
smoke. Haze tends to present a gray or bluish hue [7], which leads to decrease of
contrast and color fidelity of the original scene radiance. As the amount of scat-
tering increases, the amount of degradation also increases in light transport. This
phenomenon is defined as a transmission function that represents the portion of
light from the scene radiance that is not affected by scattering in participating
media.

The relationship between the scattered light and the attenuated scene radi-
ance has been expressed as a linear interpolation via a transmission term com-
monly used in many dehazing algorithms [3,4,7,9]:

I (x) = t (x) J (x) + (1 − t (x)) A, (1)

where I(x) is the linear signal intensity at pixel x, J(x) is unknown scene radi-
ance, t(x) is the transmission ratio, describing the portion of remaining light
when the reflected light from a scene surface reaches to the observer through the
medium, and A is a global atmospheric vector, which is unknown. The atmo-
spheric vector A represents the color vector orientation and intensity of atmo-
spheric light in the linear sRGB color space, and along with the interpolation
term (1 − t (x)), the right additive term in Eq. (1) defines the intensity of airlight
at an arbitrary pixel x. Additionally, the atmospheric vector is independent of
scene locations, i.e., the atmospheric light is globally constant.

The amount of scattering is closely related to the distance that light travels,
i.e., the longer light travels, the more scattering occurs. Therefore, the transmis-
sion decays as light travels. Suppose that haze is homogeneous; this phenomenon
then can be written as follows: t (x) = e−βd(x), where β is a scattering coefficient
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of the atmosphere [9] that controls the amount of scattering, and d(x) is the
scene depth at the pixel x.

The goal of haze removal is to estimate the transmission ratio t and the
atmospheric vector A so that scene radiance J can be recovered from the trans-
mission t and the atmospheric vector A as follows:

J (x) =
I (x) − (1 − t (x)) A

max (ε, t (x))
, (2)

where ε is a small value to prevent division by zero.

Linear Color Space. As shown in Eq. (1), the hazy image formation is the
linear combination of a scene radiance and haze factor. Dehazing is a process
to perform subtraction from the input intensity by the amount of haze. The
required condition for the process is that the pixel intensity must be linearly
proportional to the incident radiance based on physics, which is only valid in
the linear sRGB color space. However, gamma correction is already baked in the
pixel intensities in general color images. If one subtracts the haze factor from the
original intensity in the nonlinear sRGB space, dehazing results appear incon-
sistent with different levels of pixel intensities. Consequently, manual tweaking
parameters are often required, as in Fattal [4]. Different from existing dehazing
methods [2–4,17], we first perform inverse gamma correction to linearize the pixel
values before recovering the scene radiance; i.e., we use a linearized image IL by
applying a power function with an exponent of the standard display gamma to
an sRGB value: I(x) = {I ′(x)}γ , where I ′(x) is a non-linear RGB value, and γ
is a display gamma (e.g., γ = 2.2 for the standard sRGB display), instead of I
during the transmission estimation and regularization processes, and we then
perform gamma correction for display.

Haze Estimation. Since airlight is energy scattered in air, airlight tends to
be locally smooth in a scene, i.e., local airlight remains constant in a similar
depth. In contrast, the original radiance in a scene tend to vary significantly,
naturally showing a variety of colors. When we isolate the scene radiance into a
small patch in an image, the variation of scene radiances within a patch tends to
decrease significantly to form a cluster with a similar color vector, assuming that
the real world scene is a set of small planar surfaces of different colors. Then, one
can estimate a transmission value with certain natural image statistics within a
patch based on the local smoothness assumption on scene depths.

Following this perspective of the traditional approach [3], we also define a
linear subspace that presents local color pixels in the color space. A linear sub-
space in each patch comprises two bases: a scene radiance vector J(x) at the
center pixel x and a global atmospheric vector A. In this space, a scene depth
is piecewise smooth, and the local pixels share the same atmospheric vector.
Now we can formulate dehazing as finding these two unknown basis vectors,
approximating the transmission value t(x) that is piecewise smooth due to the
local smoothness of a scene depth. Figure 2 depicts the estimation process for an
overview.
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Fig. 2. (a) Extracting a patch from a hazy image. I(Ω) is a set of linearized color
pixels in patch Ω that has a center pixel of x. The white dot indicates the center
pixel x. (b) We initially estimate the amount of haze using linear subspaces [3,7].
A is an atmospheric vector of the image (a), I (x) is the linearized center pixel x
depicted as the white dot, and J (x) is the scene radiance vector of the pixel I (x).
Pixel intensity I (x) is a linear interpolation of the vector A and J (x), and hence lies
on the linear subspace [the blue plane in (b)] spanned by those two vectors. The red
dots describe pixels extracted from I (Ω). These pixels are projected onto vector A
to obtain a marginal distribution with respect to A. The red arrow from the cluster
denotes the amount of airlight that is determined from the minimum value of the
marginal distribution. Images courtesy of Kim and Kim [1]. (Color figure online)

Atmospheric Vector Estimation. Airlight is a phenomenon that acts like a
light source, which is caused by scattering of participating media in the atmo-
sphere [7]. The atmospheric vector represents the airlight radiance at the infinite
distance in a scene, i.e., the color information of airlight itself. Therefore, the
atmospheric vector does not include any scene radiance information, and it only
contains the airlight component. The region full of airlight is the most opaque
area in a hazy image. We follow a seminal method of airlight estimation by He
et al. [2]. The atmospheric vector A is estimated by picking up the pixels that
have the top 0.1% brightest dark channel pixels and then choosing the pixel
among them that has the highest intensity in the input image. However, if there
are saturated regions such as sunlight or headlights, maximum filtering of the
dark channel could be incorrect since those regions might have the highest (sat-
urated) dark channel. Also, we assume that the most opaque region is the most
brightest within an image, and we therefore discard the pixels that are within
aforementioned saturated regions. We then select the 0.1% pixels among the rest
as He et al. [2]’s method does, so that we can estimate the atmospheric vector
consistently. We subsequently average the chosen pixels to reject noise.

Transmission Estimation. We first assume that transmission is piecewise
smooth. In Eq. (1), the portion of haze at a pixel x is determined by the
term (1 − t (x)) that indicates the amount of haze to be removed. We deter-
mine the amount of haze from given color signals within a patch. Suppose the
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given color signals in each patch are linear combinations of two unknown bases,
J and A, that form a linear subspace. If we project the given pixels onto the
atmospheric vector A, we can estimate the contribution of the haze signal mixed
into the input signals in the patch.

Supposing IA(Ω) is a set of scalar projections of color vectors I(Ω) onto an
atmospheric vector A in patch Ω (Fig. 2), where the pixel x is located at the
center, then it can be written as following Fattal’s method [3]:

IA (Ω) = I (Ω) · A

‖A‖ , IA (Ω) ∈ R
1×|Ω|. (3)

We assume the airlight within a patch to be constant while the scene radiance
might vary. To focus only on the airlight component, it is necessary to obtain a
marginal distribution of the surrounding pixels with respect to the basis vector A,
as shown in Fig. 2(b).

The marginal distribution IA (Ω) describes the histogram of airlight compo-
nents within a patch. This distribution would have had a very low minimum
value if it had not been influenced by piecewise constant airlight. However, if we
take the minimum projected value, there could be a large chance to take an out-
lying value as the minimum. We use the i-th percentile value from the projected
pixel distribution to reject outliers effectively to achieve robust performance:

Imin
A (Ω) = Pi

k∈Ω
(IA (k)) , Imin

A (Ω) ∈ R
1, (4)

where Pi represents an i-th percentile value (i = 2).
The minimum percentile scalar projection onto an atmospheric vector cor-

responds to the amount of haze of a pixel from its patch, and thus the min-
imum projection corresponds to the haze component part in Eq. (1), which is
(1 − t (x)) ← Imin

A (Ω).
Additionally, projection onto the atmospheric vector requires two bases (a

pixel and an atmospheric vectors) to be orthogonal. However, pixels within a
patch are not necessarily orthogonal to the atmospheric vector, so projection
needs to be compensated for non-orthogonality. If a color vector has a small
angle with its atmospheric vector, then its projection will have a larger value
due to the correlation between the two vectors. We attenuate Imin

A by a function
with respect to the angle between a pixel vector and an atmospheric vector that
is given by

t (x) = 1 − f
(
θ̄
) · Imin

A (Ω) , (5)

where θ is a normalized angle between a pixel vector and an atmospheric vector
within [0, 1]. The attenuation function f () is given by

f
(
θ̄
)

=
e−kθ̄ − e−k

1 − e−k
, (6)

where the function has a value of [0, 1] in the range of θ̄. In this work, we
set k = 1.5 for all cases. This function compensates transmission values by
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attenuating the value Imin
A since the function has a value close to 1 if θ̄ has a

small value. See Fig. 3(c). Figure 4 shows the impact of our attenuation function.
Our attenuation prevents over-estimation of transmission where orthogonality
between the atmospheric vector and a color vector does not hold: Thus, we can
avoid over-saturated dehazed results.

Fig. 3. (a) A hazy input image. (b) Each single pixel from the red and blue boxes is
plotted in the RGB space along with the atmospheric vector A. J1 and J2 in each plot
correspond to the two pixels extracted. (c) The attenuation function defined as Eq. (6)
is plotted as above. The red and blue dots indicate the amount of attenuations of the
red and blue patches. This plot shows that the amount of attenuation increases as an
angle between a color vector and an atmospheric vector decreases. Images courtesy of
Kim and Kim [1]. (Color figure online)

The size of a patch is crucial in our method. If the size is too small, then
the marginal distribution does not contain rich data from the patch, resulting
in unreliable estimation such as clamping. On the contrary, an excessively large
patch might include pixels in different scene depth and our estimation stage takes
the minimum value in the marginal distribution, and hence the transmission
estimate will be overestimated. In our implementation, we use patches of 15-by-
15 pixels and it showed consistent results regardless of the size of an image.

Removing Outliers. While our transmission estimation yields reliable trans-
mission estimates in most cases, however, there are a small number of cases
that does not obey our assumption. We take them as outliers and mark them
as invalid transmission values, and then interpolate them in the regularization
stage (see Sect. 4).

Distant regions in an image such as sky, and objects whose color is grayish
have a similar color of haze. In the RGB color space, the angle between an
atmospheric vector and the color vector of a pixel in those regions is very narrow
and the image pixel’s luminance is quite high. In this case, unreliable estimation
is inevitable since there is a large ambiguity between the color of haze and scene
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radiance. As a result, unless we do not reject those regions, the transmission
estimate will be so small that those regions will become very dim in turn. For
this reason, we discard the transmission estimates, where the angle between an
image pixel and an atmospheric vector is less than 0.2 rad, the pixel’s luminance
(L∗) is larger than 60 in the CIELAB space, and the estimated transmission
value is lower than a certain threshold: 0.4 for scenes having a large portion of
distant regions and 0.1 for others.

When estimating an atmospheric light, we assumed that the most opaque
region in an image is the brightest area of the whole scene. However, pixels
brighter than the atmospheric light can exist due to very bright objects such as
direct sunlight, white objects, and lamps in a scene. Those pixels do not obey
our assumption above, and hence this leads to wrong transmission estimation.
Therefore, we discard pixels whose luminance is larger than the luminance of
the atmospheric light.

4 Non-local Regularization Using Iso-Depth Neighbor
Fields

Once we calculate the initial estimates of transmission for every pixel, we filter
out invalid transmission values obtained from extreme conditions. The transmis-
sion estimation and outlier detection stages might often yield incomplete results
with blocky artifacts. We, therefore, need to propagate valid transmission values
in the image.

MRF Model. As we mentioned above, the transmission is locally smooth.
Therefore, in order to obtain a complete transmission map having sharp-edge
discontinuities, we need to propagate the incompletely estimated transmission
map using Markov random fields. The probability distribution of one node in an
MRF is given by

p
(
t (x)

∣
∣t̂ (x)

)
= φ

(
t (x) , t̂ (x)

)
ψ (t (x) , t (y)) , (7)

where t (x) is a latent transmission variable at pixel x, t̂ (x) is an initially esti-
mated transmission value (see Sect. 3), φ() is the data term of the likelihood
between t(x) and t̂(x), and ψ() is a smoothness prior to relate latent transmis-
sion t(x) with neighboring transmission t(y), where y is a neighboring pixel of x.
While the data term φ() describes the fidelity of observations by imposing a
penalty function between the latent variable and the observed value, the regu-
larization term ψ() enforces smoothness by penalizing the errors between one
latent variable and its neighboring variables.

The data term φ() is given by

φ
(
t (x) , t̂ (x)

)
= exp

(

−
(
t (x) − t̂ (x)

)2

σt̂(Ω)2

)

, (8)

where σt̂(Ω) is the variance of observation values t̂ within patch Ω that has the
center at pixel x. See Fig. 5. The data term models error between a variable
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and observation with in-patch observation variance noise via a Gaussian distri-
bution. The in-patch variance of observation values implies that the greater the
variance of in-patch observation is, the more uncertain the observation values
are, resulting in giving less influence from the data term on the distribution.

The regularization term ψ() is written as

ψ (t (x) , t (y)) =
∏

y∈Nx

exp

(

− (t (x) − t (y))2

‖I (x) − I (y)‖2
)

, (9)

where I () is a linearized pixel intensity of an image, and pixel y is in a set
of neighbors Nx of pixel x. The regularization term encourages smoothness
among one variable and its neighboring variables by penalizing pairwise dis-
tances between them, where the distribution of the distances follows a Gaus-
sian distribution. If (t (x) − t (y))2 is large, then it indicates that the distance
between t (x) and its neighbor t (y) is large, and hence the cost from the regular-
ization term will also become large, which enforces strong smoothness between
them. ‖I (x) − I (y)‖2 in the denominator of the prior term controls the amount
of smoothness by exploiting information from an input image. This property
implies that if two image pixels are similar, then their transmission values are
likely to be similar as well. On the contrary, it gives sharp-edge discontinuity
in transmission values along edges since the value of the denominator becomes
large when the difference between two pixels is large.

In fact, the probability distribution of an MRF over the latent variable t
is modeled via the Gaussian distribution. In this case, the MRF is formalized
by using a Gauss-Markov random field (GMRF), which can be solved by not
only using computationally costly solvers, but also by a fast linear system solver
[3,21].

Finally, we formulate a cost function by taking the negative log of the pos-
terior distribution [Eq. (7)] following Fattal’s method [3,4], which is written by

E (t) =
∑

x

⎧
⎨

⎩

(
t (x) − t̂ (x)

)2

σt̂(Ω)2
+

∑

y∈Nx

(t (x) − t (y))2

‖I (x) − I (y)‖2

⎫
⎬

⎭
. (10)

The regularization process is done by minimizing the cost function, which is
solved by differentiating the function with respect to t and setting it to be zero.

Iso-Depth Neighbor Fields. In conventional grid MRFs, a prior term [Eq. (9)]
associates adjacent four pixels as neighbors. However, pixels in a patch lying on
an edge may be isolated when the scene surface has a complicated shape. In
Fig. 5(a), the leaves in the left side of the image have a complicated pattern
of edges, and the bricks lie behind the leaves. If we model a grid MRF on the
image, then pixels on the tip of the leaves will be isolated by the surrounding
brick pixels. In this case, smoothness of the leaf pixels will be imposed mostly
by the brick pixels, where there is a large depth discontinuity between them.
In other words, a large scene depth discrepancy exists in the patch, and thus if
some pixels lying on the edge are only connected to their adjacent neighbors, the
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Fig. 4. Impact of our attenuation term in transmission estimation. As the red arrows
indicate, our attenuation term prevents over-estimation of transmission which results
in over-saturation. (Color figure online)

Fig. 5. (a) The picture shows some sampled NNFs that associate pixels having similar
scene depths. The line with the same color denotes association of pixels in the same
NNF. (b) An MRF model of the node x from the patch in (a) associated with adjacent
four neighbors and distant neighbors in the NNF. Since the node x is located in the
end point of the leaf, its adjacent pixels have very different transmission values due to
a large depth discontinuity. As (a) shows, the neighbors connected with the same NNF
have very similar scene depths, and hence they give a more accurate regularization cue
than the adjacent neighbors do. Images courtesy of Kim and Kim [1]. (Color figure
online)
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prior term will enforce wrong smoothness due to the large depth discrepancy. As
a result, those regions will be overly smoothed out due to the wrong connection
of neighbors.

Algorithm 1. Dehazing via Non-Local Regularization.

Require: an image I
Ensure: a result image J and a transmission map t
1: Â ← atmosphericVectorEstimate(I)
2: {IL, A} ← inverseGammaCorrect({I, Â})
3: for pixels x = 1 to n do
4: IA (Ω) ← IL (Ω) · A

‖A‖
5: Imin

A (Ω) ← Pi
k∈Ω

(IA (k))

6: t′ (x) ← 1 − f
(
θ̄
) · Imin

A (Ω)

7: t̂ (x) ← outlierReject(t′ (x) , A, IL (x))
8: end for
9: NNF ← PatchMatch(I)

10: t ← regularize(NNF, t̂, I)
11: JL ← (I − (1 − t) A) /t
12: J ← gammaCorrect(JL)

We investigate neighbors extracted from a nearest-neighbor field (NNF) using
the PatchMatch algorithm and found that the NNF associates pixels at similar
scene depths. This insightful information gives a more reliable regularization
penalty since the neighboring nodes in the NNF are likely to have similar trans-
mission estimates. We validate our method through evaluation using syntheti-
cally generated hazy images along with their ground truth depth maps. Figure 6
shows the synthetic hazy scenes and their corresponding depths. We compute the
absolute depth difference between a ground truth depth pixel and its iso-depth
pixels associated by NNFs. The histograms in Fig. 6 show that the NNFs link
one pixel to others having similar depth values. Thus, we add more neighbors
belonging to the same NNF to the smoothness term and perform statistical infer-
ence on the MRF along with them. We note that these long-range connections in
regularization are desirable in many image processing applications, addressed by
other works [4,22]. After regularization, we use the weighted median filter [23]
to refine the transmission map. Algorithm1 summarizes our dehazing algorithm
as an overview.

5 Results

We implemented our algorithm in a non-optimized MATLAB environment
except the external PatchMatch algorithm [6], and processed it on a desktop
computer with Intel 4.0 GHz i7-4790K CPU and 32 GB memory. For the case of
the house image of resolution 450 × 440 shown in Fig. 1(b), our algorithm took
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Fig. 6. Images (a) and (d) are synthetically generated hazy scenes, and images (b)
and (e) are their ground truth depth maps. We computed the absolute transmission
difference between a transmission value of a pixel and its iso-depth pixel’s transmission
values associated by PatchMatch [6]. Plots (c) and (f) are the distributions of the
differences. Plot (c) shows that the portion of the absolute difference below 0.2 occupies
86% of entire NNFs, while Plot (f) shows the case of 81%.

6.44 s for running the PatchMatch algorithm to seek 17 neighbors, 8.32 s to esti-
mate an atmospheric vector, transmission values and rejecting outliers, 43.43 s
for our regularization stage, and 0.65 s for running the weighted median filter
and recovering the scene radiance, taking approximately 58.84 s in total. We
evaluated our algorithm with a large number of outdoor hazy images obtained
from Fattal’s method [4] to prove robustness, and we also present comparisons
with state-of-the-art dehazing methods. Refer to the supplemental materials for
more results.

Regularization. We compare results of our method with those of state-of-the-
art methods in terms of regularization. Berman’s method [5] regularizes initial
transmission estimates with a grid GMRF as shown in the second columns in
Fig. 7. Due to the lack of non-local information in regularization, certain regions
suffer from the haze isolation problem as mentioned above. Other than using a
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grid MRF, Fattal’s method [4] takes an augmented GMRF model for regular-
ization, which extends neighbor fields within a local window. However, it does
not connect more neighbors for all pixels due to time complexity. As a result,
certain regions are not fully recovered from the haze isolation problem. Figure 7
validates that our method successfully removes haze even from a scene having
abrupt depth changes with complicated patterns.

Figure 8 shows the intermediate stages in our regularization process of trans-
mission (d)–(g), along with our result of the house scene (c). We start our regular-
ization from Fig. 8(d) that has outliers [represented as black pixels in Fig. 8(d)].
In particular, Fig. 8(e) and (f) compare the impact of NNFs in the MRF regu-
larization. When we regularize the initial estimate with only GMRFs, certain
regions with complex scene structures are over-smoothed due to the wrong
smoothness penalty as Fig. 8(e) shows. We account for additional neighbors from
NNFs to obtain a clearer transmission map shown in Fig. 8(f). Figure 8(g) shows
the final transmission map that we refine with a weighted median filter [23].

We also compare our regularization method with representative matting
methods: the matting Laplacian method [24] and the guided filter method [20]
in Fig. 9. While we use the guide image as just a guide to smooth and enforce
sharp gradient along edges on transmission estimates, both methods are based
on the assumption that an output and an input guidance form a linear relation-
ship. As described in Sect. 3, scene radiance varies largely while transmission
does the opposite. Consequently, the two methods follow the behavior of the
scene radiance, which results in distorting the given estimates. As a result, our
regularization method yields an accurate transmission map with clear-edge dis-
continuities while the others overestimate the transmission estimates in turn.

Qualitative Comparison. Figure 10 qualitatively validates the robust perfor-
mance in dehazing the common reference dataset of hazy scenes [4]. We compare
the performance of our dehazing algorithm with three state-of-the-art meth-
ods [2,4,5]. We were motivated to achieve consistent performance of dehaz-
ing with less parameter controls like other image processing algorithms [25,26].
Figure 10 shows results using the single set of parameters as described in Sect. 3.
Our method shows competitive results to other method [4] that requires manual
tweaking parameters per scene to achieve plausible results. For close-up images
of the results, refer to the supplemental material.

Time Performance. Table 1 compare the computational performance of our
method with traditional grid GMRFs and our iso-depth GMRFs using images
shown in Fig. 10. We also shows computational costs of obtaining only NNFs with
17 neighbors using PatchMatch [6] in the third row. Dehazing with iso-depth
NNF-GMRFs takes 10.58 times more time; however, iso-depth NNFs give richer
information in regularization, resulting in more exact scene radiance recovery.
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Fig. 7. Comparisons of dehazing in terms of regularization. The two columns from left
are results from other two methods: Fattal’s method [4] using augmented GMRFs and
Berman’s method [5] using traditional GMRFs, and the third column is our results
(Insets: corresponding transmission maps). While other methods often fail to obtain
sharp edge-discontinuities in the images, our method yields clear recovered scene radi-
ance maps as shown above. Notable regions are pointed with arrows. Images courtesy
of Kim and Kim [1].
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Fig. 8. We present an example before and after applying our dehazing and regulariza-
tion method. (a) The hazy input image. (b) The recovered scene radiance map with
the transmission map regularized by grid MRFs (e). (c) The recovered scene radi-
ance map with the final transmission map (g). Images (d)–(g) compare transmission
maps to show the influence of using iso-depth NNFs. All regularizations are done using
GMRFs. (d) The initial transmission estimates including discarded pixels (the black
pixels). (e) The regularized transmission map without NNFs. (f) The regularized trans-
mission map with NNFs. (g) The final refined map of (f) using the weighted median
filter. Images courtesy of Kim and Kim [1].

Quantitative Comparison. We compare our method with the entire synthetic
hazy image dataset provided by Fattal [4]. The synthetic hazy images were gen-
erated by datasets that contain clear indoor and outdoor scenes, and their corre-
sponding depth maps. Table 2 reports the quantitative comparison of our method
with other methods: He et al. [2], Fattal [4], and Berman et al. [5]. Addition-
ally, we present the statistics in Table 2 and Fig. 11. It says that our method
shows the best performance in dehazed images, and is strongly competitive to
state-of-the-arts in transmission maps. We also show the dehazed images used
for the quantitative comparison in Fig. 12. Our method shows competitive and
consistent results particularly in dehazed images.

Table 1. Comparison of time performance of dehazing with the traditional grid GMRFs
and our GMRFs with iso-depth NNFs (unit: second). Refer to Fig. 10 for processed
images. The third row shows computational costs of only seeking NNFs with 17 neigh-
bors using PatchMatch [6] in our method. The table courtesy of Kim and Kim [1].

Dehazing House Forest ny17 Train Snow Castle Cones Average

With grid GMRFs 6.43 26.55 27.51 7.74 18.88 12.84 6.41 15.19

With NNF-GMRFs 58.84 305.48 305.06 73.06 191.76 129.18 61.12 160.64

(Computing NNFs only) (6.44) (31.82) (28.48) (7.15) (18.54) (11.01) (7.31) (15.82)
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Fig. 9. We compare our regularization with other methods. The leftmost one is the
original image of cones. The first row shows dehazed results with our transmission
estimation step and each regularization method written at the lower right. We cropped
the dehazed images in the first row to highlight the influence of regularization methods
in the second row. The third row presents a sequence of cropped transmission maps in
the same manner as the second row. Images courtesy of Kim and Kim [1].

Table 2. Quantitative comparisons of our method with other methods [2,4,5]. The
error values are computed from the entire synthetic hazy image dataset provided by
Fattal [4]. All figures represent mean L1 error of the estimated transmission t (the left
value) and output image J (the right value). Red figures indicate the best results, and
blue for the second best. For a fair comparison, parameters for each method, such as
display gamma for sRGB linearization and the airlight vector, were optimized for the
highest performance. The table courtesy of Kim and Kim [1].

He [2] Fattal [4] Berman [5] Ours

church 0.0711/0.1765 0.1144/0.1726 0.1152/0.2100 0.1901/0.1854

couch 0.0631/0.1146 0.0895/0.1596 0.0512/0.1249 0.0942/0.1463

flower1 0.1639/0.2334 0.0472/0.0562 0.0607/0.1309 0.0626/0.0967

flower2 0.1808/0.2387 0.0418/0.0452 0.1154/0.1413 0.0570/0.0839

lawn1 0.1003/0.1636 0.0803/0.1189 0.0340/0.1289 0.0604/0.1052

lawn2 0.1111/0.1715 0.0851/0.1168 0.0431/0.1378 0.0618/0.1054

mansion 0.0616/0.1005 0.0457/0.0719 0.0825/0.1234 0.0614/0.0693

moebius 0.2079/0.3636 0.1460/0.2270 0.1525/0.2005 0.0823/0.1138

reindeer 0.1152/0.1821 0.0662/0.1005 0.0887/0.2549 0.1038/0.1459

road1 0.1127/0.1422 0.1028/0.0980 0.0582/0.1107 0.0676/0.0945

road2 0.1110/0.1615 0.1034/0.1317 0.0602/0.1602 0.0781/0.1206

average 0.1181/0.1862 0.0839/0.1180 0.0783/0.1567 0.0836/0.1152
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Fig. 10. Validation of consistency of dehazing. The first column shows input images.
The second, third, and fourth columns are results from He et al. [2], Fattal [4], Berman
et al. [5], respectively. The fifth column presents our method’s results. We use the set
of parameters as described in Sect. 3. For the images in the third and fifth rows, we
only set the threshold of lower bound transmission to 0.4 and the others to 0.1 for
removing narrow angle outliers. Our method is competitive to other method [4] that
requires with manual tweaking parameters to achieve plausible results. Refer to the
supplemental material for more results. Images courtesy of Kim and Kim [1].
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Fig. 11. Mean L1 error plots of 11 pairs of transmission maps and dehazed (Table 2)
results, respectively. Our method shows the best performance in dehazed images, and
is strongly competitive to state-of-the-arts in transmission maps.

Fig. 12. Dehazed results for the quantitative comparison shown in Table 2. The first
column shows synthetic hazy images generated from the ground truth dataset [4] in
the second column with their corresponding depth maps. The remaining columns are
recovered scene radiance maps by each method. Our method yields consistent results
compared with other methods. Parameters for each method were optimized for the
highest performance for a fair comparison. Images courtesy of Kim and Kim [1].
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Fig. 13. Comparisons to show the influence of a patch size in estimating transmission.
(a) The original canon image. (b) The dehazed image with a patch size of 3 × 3 where
severe color clamping happens. (c) The dehazed image with a patch size of 15 × 15,
which is our choice for all results. (d) The dehazed image with a patch size of 29 × 29
in which the airlight in distant regions is underestimated. Images courtesy of Kim and
Kim [1].

Fig. 14. Validation of our narrow angle outlier rejection method described in Sect. 3.
In the second column, the distant region represented as sky has an infinite depth, and
hence our transmission estimation stage estimates its transmission as being close to
zero, which yields overly saturated results. We obtained consistent results by our outlier
rejection stage, as shown in the third column. Images courtesy of Kim and Kim [1].
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Fig. 15. Validation of our saturated outlier rejection method described in Sect. 3. The
inset is an input hazy image. The first column shows estimated transmission maps with-
out our rejection (upper left) and with our rejection (bottom left). The corresponding
dehazed scenes are shown in the second column. The bright regions (the direct light
at the upper right and the wall of the castle in the middle) are overly saturated. Our
outlier rejection succeeds to produce a consistent result by discarding those regions.

Impact of Patch Size. Figure 13 shows the results of dehazing under varying
patch sizes. Image (a) is an input image of canon, the size of which is 600× 524.
Image (b) is severely over-saturated since the size of patches is so small that
each patch cannot contain rich information of scene structures, i.e., the patch
failed to reject the influence of highly-varying nature of scene radiance. On the
other hand, as shown in image (d), its airlight is underestimated since patches
are too large to hold the assumption that transmission is piecewise constant.
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This underestimation result is exacerbated in distant regions where their scene
depth changes rapidly. In our experiment, we found that the patch size of 15×15
works properly for most scenes, and therefore we take the same patch size for
all results in this paper.

Outlier Removal. We validate our outlier-rejection process. Figure 14 shows
the regions in infinite scene depths occupy a large portion of the image that is
full of airlight in the two input images. In these regions, there is a large ambigu-
ity between airlight and scene radiance, and hence our method fails to produce
a naturally looking result as the second column shows. After we discard outliers
having a narrow angle between the atmospheric vector and the input color pixel,
we could obtain high-quality scene radiance maps in the third column. We also
show the influence of saturated intensity outliers as mentioned in Sect. 3. We esti-
mated an atmospheric vector under the assumption that the atmospheric light
is the brightest all over a scene. As Fig. 15 presents, without rejecting saturated
intensity outliers, transmission of those pixels will be severely overestimated due
to their high luminance. We can also reject those regions by increasing a patch
size; however, this will cause underestimation of airlight and cannot handle a
large area as well.

6 Limitations

While our method produces consistent results for most cases; however, there are
a small number of cases where our atmospheric vector estimation stage fails.
Figure 16 shows an example of our algorithm’s failure in finding the correct
atmospheric light. There are clouds in the image that occupy relatively large
regions but are not saturated, and therefore in the atmospheric vector estimation
stage, our method selects pixels in cloud regions as candidates of the atmospheric
light, which is not correct. For this reason, our transmission estimation stage
severely overestimates the amount of airlight, particularly in distant regions in
the scene as shown in Fig. 16(b). We validate the limitation by picking up the
atmospheric vector of the image manually, and our algorithm yields a naturally-
looking result, as the Fig. 16(c) presents. In addition, if there is a large region
that is grayish and thereby has a narrow angle between an atmospheric vector
and the region color, our algorithm fails to find correct transmission estimates
since there are too many outliers according to our outlier rejection stage, which
leads to unreliable regularization. We leave these problems as future work.
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Fig. 16. Our failure case with a landscape image. Image (a) shows the input image,
and Image (b) presents our result with the same set of parameters described. Image
(c) is our result produced with the manually-tweaked atmospheric vector. (Color figure
online)

7 Conclusion

We have presented a single-image dehazing method with our novel non-local
regularization using iso-depth neighbor fields. While traditional dehazing meth-
ods often suffer from haze isolation artifacts due to improper propagation of the
haze cues in the transmission map, our dehazing method can clarify hazy images
robustly thanks to our iso-depth regularization approach. Our non-local regu-
larization method infers nonlocal iso-depth cues to obtain more reliable smooth-
ness penalty for better handling the isolation problem even with blunt changes
of depth. The proposed iso-depth regularization method is independent of haze-
component estimation so that it is directly applicable to any state-of-the-art
dehazing methods.
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