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ABSTRACT

The performance of depth reconstruction in binocular stereo relies on how adequate the predefined baseline

for a target scene is. Wide-baseline stereo is capable of discriminating depth better than the narrow one,

but it often suffers from spatial artifacts. Narrow-baseline stereo can provide a more elaborate depth

map with less artifacts, while its depth resolution tends to be biased or coarse due to the short disparity.

In this thesis, we propose a novel optical design of heterogeneous stereo fusion on a binocular imaging

system with a refractive medium, where the binocular stereo part operates as wide-baseline stereo; the

refractive stereo module works as narrow-baseline stereo. We then introduce a stereo fusion workflow

that combines the refractive and binocular stereo algorithms to estimate fine depth information through

this fusion design. The quantitative and qualitative results validate the performance of our stereo fusion

system in measuring depth, compared with homogeneous stereo approaches.
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Chapter 1. Introduction

1.1 Motivation

Camera was invented to capture the real world as an image which is the two-dimensional projection

of lights passing through the optical pipeline of the camera. The 2D imaging technology significantly

influences daily life of people with emerging of mobile cameras. However, when we capture a scene

with a traditional camera, we miss depth information which is the one dimension consisting of the three

dimensional space in which we live. As a consequence, we face many challenges in understanding and

analyzing the captured scene. In some cases such as collision detection and manufacturing, distance itself

could be a key parameter, which is the purpose of the applications. Also object detection and recognition

could be solved in a more effective and efficient way if the depth information is given. Since the benefits

of depth data are significant, it leads many researchers to dive in various approaches for estimating depth.

One of the technologies to acquire depth is to employ binocular parallax, which is the difference in

the image positions of an object on different view points. Our human visual system also makes use of

this binocular cue for understanding a scene using our two eyes. As the principle of this cue is concise

and simple, many researchers have been working on this binocular stereo. On the other hand, refractive

stereo is another way to extract depth information. A refractive stereo system consists of a camera with

a refractive medium in front of the camera in general. The system enables us to capture the scene with

intentional distortion. We can recover depth information by estimating the displacement between the

corresponding pixel positions of an object on the two images captured with and without the refractive

medium. This procedure is similar to the binocular stereo, in which the corresponding pixel needs to be

searched on two different images.

Refractive stereo enables us to estimate depth with a single camera, using an additional optical

element (refractive medium). However, the displacement occurred by the refraction on the medium is

shorter than that of binocular system in general. To this end, it restricts the depth resolution of the

system which is an important factor for some applications.

1.2 Scope

There are many existing binocular 3D sensors and corresponding depth estimation methods. However, it

is still challenging to obtain a depth map with high depth resolution and less artifacts. In this thesis, we
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propose a fusion system of refractive stereo and binocular stereo in order to obatin high quality depth

estimates in terms of both depth artifacts and depth resolution. Also we present a fusion workflow for

the proposed system.

We take inspiration from refractive stereo to combine these two heterogeneous stereo systems, where

a stereo fusion system is designed with a refractive medium placed on one of the binocular stereo cameras.

Multiple images are captured on the camera equipped with the refractive medium by placing the medium

in different poses. Also we capture an image from the other camera. Using the captured images, we

estimate a depth map with high depth resolution and less spatial artifacts using our proposed workflow.

We pre-calibrate the parameters for the refractive medium, and the geometric and the radiometric

parameters of our fusion system in order to estimate depth information. Parameters of the medium are

the thickness, the refractive index and the pose of the medium with respect to the camera. Geometric

calibration is the relation between the poses of the two cameras, which is necessary for matching two

corresponding points on the stereo images. The refraction effect on the medium alters the spectral power

distribution of the lights passing through the medium. Therefore, color correction of refracted images is

necessary to match the refracted images with the image captured from the other camera without the

medium.

This proposed stereo fusion workflow takes the advantages of both refractive and binocular stereo,

producing depth estimates with less artifacts and a high depth resolution. Our system can be easily

adopted to existing binocular systems by placing a refractive module in front of one camera. We

demonstrate the effectiveness of our method in acquiring a high depth resolution and less spatial artifacts

in this thesis.

1.3 Contributions

The contributions of this thesis are three-fold.

· A stereo fusion system that combines refractive and binocular system. We design a

stereo system on a binocular base with a refractive medium. The medium is placed in front of a

camera, and the refracted images are captured by rotating the medium.

· Calibrations for the proposed fusion system. We develop several calibration methods for our

fusion system including radiometric, geometric and refractive calibration.

· Depth estimation workflow that combines heterogenous stereo images. After obtaining

the necessary parameters for depth estimation in the calibration step, we estimate depth information

with our proposed workflow. The resulting depth map has a high depth resolution with less artifacts.

Most of these contributions have been presented in the following publication:
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· Seung-Hwan Baek and Min H. Kim, Stereo Fusion using a Refractive Medium on a Binocular

Base, Proc. Asian Conference on Computer Vision, November., 2014. (oral presentation)

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 presents background knowledge about binocular stereo

and refractive stereo. Chapter 3 explains previous work related to this thesis. Chapter 4 describes the

hardware design and calibration methods (geometric, refractive, color) for our setup. Chapter 5 presents

a depth estimation method for refractive stereo and a stereo fusion approach combining the two different

designs: refractive and binocular. Experimental evaluations of this proposed method are presented in

Chapter 6, including quantitative and qualitative results. Chapter 7 summarizes this thesis and discusses

the limitations of the proposed system with possible modifications to resolve the problems. Chapter 8

concludes this thesis.
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Chapter 2. Background

This chapter describes background knowledge about binocular stereo and refractive stereo to help the

understanding of the thesis.

2.1 Binocular Stereo

Binocular stereo utilizes two cameras with a specific displacement between the cameras. Two images

captured by the cameras contain a pair of corresponding pixels projected from a surface. Binocular

disparity describes pixel-wise displacement of parallax between the corresponding points on a pair of

stereo images.
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Figure 2.1: For an object point, pixel positions on two image planes are different depending on the
depth of the point, the focal length of the cameras and the baseline of the system.

The disparity of a pixel is related to the depth of a surface corresponding to the pixel. Fig. 2.1 shows a

schematic diagram of a binocular system. The rays from an object point on a visible surface are projected

into two cameras passing through the optical centers of the cameras. The pixel-wise displacement between

the corresponding pixels is called as disparity for the object point:

d = |XL −XR| , (2.1)
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where XL and XR are the projected points on the left image plane and the right image plane.

We can recover the depth z using simple trigonometry as:

z =
fb

d
, (2.2)

where f is the focal length of the camera lens; b is the distance between the cameras, so called baseline

and d is the disparity of the pair of corresponding pixels. In order to obtain a depth map from stereo

images, we first estimate a disparity map, and then the depth map can be easily computed if we know

the other two parameters (the focal length and the baseline) following Eq. (2.2).

As we mentioned, disparity is the displacement of the corresponding pixels projected from an

object. Therefore, computing the disparity is accompanied with searching the corresponding points

(correspondence problem). With an ideal alignment of a binocular stereo system, the corresponding

points lies on a same row with a different column. This condition is called an epipolar constraint, and we

can solve correspondence problem efficiently by restricting the search range of correspondence into one

dimension when the epipolar constraint holds. The details of the constraint is explained in Sec. 2.3.

Disparity estimation of binocular stereo usually assumes that epipolar constraint holds for the stereo

input images, and the method for estimating disparity consists of following four steps [26]:

1. Matching cost computation,

2. Cost aggregation,

3. Disparity computation, and

4. Disparity refinement.

The problem of estimating the disparity of a pixel on a left image is exactly equivalent to the

correspondence search, which is to find the corresponding pixel on a right image. Note that it is also

possible to select a pixel on the right image, and then find the corresponding point on the left image. As

the corresponding point of a pixel lies on a same row due to the epipolar constraint, we can estimate

the corresponding pixel using exhaustive search efficiently. For given disparity candidates, we directly

compute the pixel positions of the corresponding point for a given original pixel. The remaining task is

to select a best disparity of which the corresponding pixel candidate is most plausible.

To see the plausibility of the candidates, the color of each corresponding pixel is compared to the

color of the original pixel. However, in this procedure, we implicitly assume that all surfaces on a scene

follow Lambertian reflectance, which is a surface property that the color of the reflected ray on the surface

is the same regardless of the viewing directions. It is the reason why stereo algorithms cannot recover

depth of surfaces with non-Lambertian reflectance such as specular reflection. In this thesis, we assume
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that the Lambertian reflectance assumption holds for our target scenes. Now, since the rays from a same

object point have same color under the Lambertian surface assumption, we set the correspondence metric

as a color difference between the corresponding pixel and the original pixel. The results of the pixelwise

correspondence matching are called matching costs. As we mentioned, matching costs are computed for

all target disparity candidates per a pixel.

The matching costs itself could contain many errors caused by noises and pixel errors. In order to

build more robust matching costs, a cost aggregation technique is usually employed. In essence, cost

aggregation is a filtering process for the matching costs.Underlying idea of cost aggregation is that the

matching cost of a pixel should be similar to that of the neighbour pixel having similar color. Cost

aggregation removes errors while keeping the consistency of the matching costs with the RGB image and

imposing spatial consistency on the matching costs. There have been various cost aggregation methods,

and the methods can be classified into two groups broadly: local cost aggregation and non-local cost

aggregation. The difference between the two approaches is a window size of which inner pixels are

considered as neighbour pixels enforcing the similarity of matching costs. Non-local cost aggregation

enforces the similarity between the all pixels on an image while local aggregation only utilizes neighbour

pixels on an window of which size is much smaller than that of an image.

We should select an optimal disparity for a pixel on the image using the aggregated costs, and this

process is called as disparity computation. The methods of disparity computation can be also categorized

into two groups: local approaches and global approaches. The local approaches select the optimal disparity,

which minimizes or maximizes the aggregated costs for a pixel. The other approaches (global) estimates

the best disparity considering the aggregated costs of the pixel as well as the aggregated costs of the

neighbor pixels. In general, local methods require less computational cost than global methods while

global methods produce a more elaborate depth map than that of local methods.

After obtaining a disparity map, we can refine the depth estimates using filtering methods such as

a median filter and a box filter. This step is called as disparity refinement, which is not a necessary

procedure of depth estimation. However, refinement could be useful to improve the quality of depth

estimates with only a single image and the corresponding depth map.

2.2 Baseline vs. Disparity

Computational cost and depth accuracy are strongly correlated to the number of disparity candidates,

which is proportional to the system baseline as shown in Eq. (2.2).

• Wide-Baseline Stereo. Wide-baseline stereo reserves more pixels for disparity than narrow-baseline

stereo does. Therefore, the wide-baseline systems can discriminate depth with a higher resolution. On the

other hand, the search range of correspondences increases, and in turn, it increases the chances of false
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matching. The estimated disparity map is plausible in terms of depth but includes many small regions

without depth as spatial artifacts (of holes) on the depth map. This missing information is caused by

occlusion and false matching in unfeatured or pattern-repeated regions, where the corresponding point

search fails.

• Narrow-Baseline Stereo. Narrow-baseline stereo has a relatively short search range of correspondence.

We have relatively less chances for false matching so that we can enhance the accuracy and efficiency

in cost computation. In addition, the level of spatial noise in the disparity map is low, as the occluded

area is small. However, narrow-baseline stereo reserves a small number of pixels to discriminate depth.

The depth-discriminative power decreases accordingly, whereas the spatial artifacts in the disparity map

reduce. It trades off the discriminative power for the reduced spatial artifacts in the disparity map.

2.3 Binocular Calibration

Binocular stereo uses two cameras for obtaining a binocular cue. In order to meet the epipolar constraint

of binocular stereo, we need to set the poses of the image sensors as parallel to each other. Also the levels

of the image sensors need to be same. However, in real experimental setup, it is extremely difficult to

manually align two cameras to be an ideal poses satisfying epipolar constraint. Therefore, instead of

manually adjusting the cameras, the poses of the camera are roughly fixed in general. Then we usually

transform the two image planes into two virtual image planes, which meet the epipolar constraint. This

process is often called as rectification.

Rectification computes the extrinsic relation between the two camera viewpoints. Camera calibration,

which is the process for estimating the intrinsic and extrinsic parameters of a camera, is necessary in

advance of rectification. Intrinsic parameters of a camera includes the coordinates of the principal point,

the focal length of the lens, its aspect ratio, lens distortion and skewness. Extrinsic parameters are

rotation and translation matrices from the world coordinate system to the camera coordinate system.

After capturing two cameras by capturing a chessboard target with several different poses, the properties

of the two cameras are obtained [31]. Finally, we build up transformation matrices that enable us to have

two virtual image planes holding epipolar constraints.

2.4 Depth from Refraction

Refractive stereo estimates depth using the refraction of light via a transparent medium. There has been

several studies that tried to formulate the geometric relationship between refraction and depth [6, 12].

Here we formulate the foundations of general depth estimation from refractive stereo.

Suppose a 3D point p in a target scene is projected to pd on an image plane through the optical center
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refractive light transport in 3D.

of an objective lens C directly without any transparent medium (Fig. 2.2(a)). Inserting a transparent

medium in the light path changes the transport of the incident beam from p and reach at pr on the image

plane with a lateral displacement d (between w/ and w/o the medium). The displacement between pd

and pr on the image plane is called refractive disparity.

Now we formulate the depth z of p using simple trigonometry following [11,12]:

z = f
R

r
, (2.3)

where r is a refractive disparity, found by searching a pair of corresponding points; f is the focal length;

R is the ratio of lateral displacement d to sin(θp).

R =
d

sin (θp)
, (2.4)

Here θp is the angle between
−−→
prC and the image plane. In order to obtain the value of R, we first compute
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cos (θp) using the following equation:

cos (θp) =
−→pre ·

−−→
prC

|−→pre|
∣∣∣−−→prC∣∣∣ . (2.5)

Then, we simply assign sin (θp) into Eq. (2.4) after computing sin (θp) with a simple equation:

sin2 (θp) + cos2 (θp) = 1. (2.6)

Lateral displacement d, the parallel-shifted length of the light passing through the medium, is determined

as [14]:

d =

(
1−

√
1− sin2 (θi)

n2 − sin2 (θi)

)
t sin (θi) , (2.7)

where t is the thickness of the medium; n is the refractive index of the medium; θi is the incident angle

of the light. sin (θi) can be obtained in a similar manner with the case of sin (θp) using the following

equation:

cos (θi) =

−−→
prC ·

−→
eC∣∣∣−−→prC∣∣∣ ∣∣∣−→eC∣∣∣ . (2.8)

The refracted point pr lies on a line, the so-called essential line, passing through an essential point

e (an intersecting point of the normal vector of the transparent medium to the image plane) and pd

(Fig. 2.2(b)). This property can be utilized to narrow down the search range of correspondences onto

the essential line, allowing us to compute matching costs efficiently. It is worth noting that disparity in

refractive stereo depends on not only the depth z of p but also the projection position pd of light and the

position of the essential point e, whereas the disparity in traditional stereo depends on only the depth z

of the point p. Prior to estimating a depth, we calibrate these optical properties in refractive stereo in

advance. See Sec. 4.2 for calibration.
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Chapter 3. Related Work

In this chapter, we briefly overview recent depth-from-stereo algorithms that are the most relevant to our

work, and categorize them into two groups by the number of cameras employed. One group estimates

depth from multi-view stereo; the other group employs a single camera equipped with additional optics,

such as an aperture mask or glass window.

3.1 Multi-View Stereo

Multi-view stereo utilizes many images with different viewpoints. In general, we call a system as a

multi-view system when the system consists of more than two different viewpoints.

Okutomi and Kanade [25] proposed a multi-baseline stereo method, which is a variant of multi-view

stereo. The proposed system consists of multiple cameras on a rail. They presented the matching cost

design for the multi-baseline setup. Instead of computing the color difference of a pixel on the reference

view and the corresponding point on the other view, color differences of every views are summed up. This

method is straightforward, however, the multi-baseline stereo gives more accurate depth estimates over

binocular stereo does.

Furukawa and Ponce [9] presented a hybrid patch-based multi-view stereo algorithm that is applicable

to objects, scenes, and crowded scene data. Their method produced a set of small patches from matched

features, which allows to fill in the gaps between neighboring feature points, yielding a fine mesh model.

Gallup et al. [10] estimated the depth of the scene by adjusting the baseline and resolution of images

from multiple cameras so that the depth estimation becomes computationally efficient. This system

can exploit the advantages of multi-baseline stereo while requiring a mechanical support of the moving

cameras.

Nakabo et al. [23] presented a variable-baseline stereo system on a linear slider. They controlled the

baseline of the stereo system depending on the target scene for estimating the accurate depth map.

Zilly et al. [32] introduced a multi-baseline stereo system with various baselines. Four cameras are

configured in multiple baselines on a rail. The two inner cameras establish a narrow-baseline stereo pair

while two outer cameras form a wide-baseline stereo pair. They then merge depth maps from two different

baselines. We take inspiration from this work [32] to extend the multiple baseline idea, i.e., we extend the

structure of traditional binocular stereo by adopting a refractive medium to one of the cameras. Refer

to [27] for in-depth investigation on other multi-view methods.
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3.2 Single-View Stereo

Nishimoto and Shirai [24] first introduced a refractive camera system by placing a refractive medium in

front of a camera. Rather than computing depth from depth from refraction described in Sec. 2.4, their

method estimates depth using a pair of a direct image and a refracted one, assuming that the refracted

image is equivalent to one of the binocular stereo images.

Lee and Kweon [17] presented a single camera system that captures a stereo pair with a bi-prism.

The bi-prism is installed in front of the objective lens to separate the input image into a stereo pair with

refractive shift. The captured image includes a stereo image pair with a baseline. Depth estimation is

analog to the traditional methods.

Gao and Ahuja [11,12] proposed a seminal refractive stereo method that captures multiple refractive

images with a glass medium titled at different angles. This method requires optical calibration of the

every pose of the medium. It was extended by placing a glass medium on a rotary stage in [12]. The

rotation axis of the titled medium is mechanically aligned to the optical axis of the camera resulting in

that the position of an essential point lies on a circle with a specific radius. Although the mechanical

alignment is cumbersome, this method achieves more accurate depth than the previous one does.

Shimizu and Okutomi [28, 29] introduced a mixed approach that combines the refraction and the

reflection phenomena. This method superposes a pair of reflection and refraction images via the surface

of a transparent medium. This overlapped image is utilized as a pair of stereo images.

Chen et al. [5, 6] proposed a calibration method for refractive stereo. This method finds the pairs of

matching points on refractive images with the SIFT algorithm [20] to estimate the pose of a transparent

medium. They then search corresponding features using the SIFT flow [19]. By estimating the rough

scene depth, they recover the refractive index of a transparent medium.

In addition to the refraction-based approaches, Levin et al. [18] introduced a coded aperture-based

approach, where they insert a coded aperture blade inside a camera lens instead of a conventional aperture.

It allows to estimate depth by evaluating the blur kernels of the coded aperture.

Bando et al. [1] presented a color-filtered aperture in a commodity camera, where the sub-apertures

of red, green and blue colors are windowed at different positions. This optical design enables the camera

to form three color channels with geometric shift at different positions to yield depth. They extract depth

from the shifted channels, analogous to traditional depth from defocus.

In this thesis, we adopt an optical hardware structure of refractive stereo [12] and combine it on a

binocular stereo base.
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Chapter 4. System Implementation

We propose a novel stereo fusion system by taking advantages of the refractive and binocular stereo

systems. This chapter describes the technical details about the hardware design and the calibration

methods for the proposed system.

4.1 Hardware Design

Our stereo fusion system consists of two cameras and a transparent medium on a mechanical support

structure. The focal length of the both camera lenses is the same as 8 mm. The cameras are placed on a

rail in parallel with a baseline of 10 cm to configure binocular stereo. We place a transparent medium

on a rotary stage for refractive stereo in front of one of the binocular stereo cameras. See Fig. 4.1 for

our system diagram and Fig. 4.2 for our actual prototype. Note that refractive stereo presents a smaller

disparity than traditional binocular stereo because it creates the disparity from the change of the light

direction by refraction. Therefore, we regard refractive stereo as being equivalent to narrow-baseline

stereo in terms of disparity in this work. i.e., refractive stereo is equivalent to short-baseline stereo in

terms of disparity. Binocular stereo structure is equivalent to wide-baseline stereo in our system. Refer to

Sec. 2.2 for more details.

Our transparent medium is a block of clear glass. The measured refractive index of the medium is

1.41 (n = sin(20◦)/ sin(14.04◦)); the thickness of the medium is 28 mm. We built a customized cylinder to

hold the medium, cut in 45◦ from the axis of the cylinder. We spin the titled medium about the optical

axis from 0◦ to 360◦ in 10◦ intervals while capturing images. The binocular stereo baseline and the tilted

angle of the medium are fixed rigidly while capturing.

For the input images of a scene, we use multiple refracted images from the camera of the refractive

module by rotating the refractive medium. And we also obtain another image from the other camera

without the glass. Note that we do not capture the scene on the camera of refractive module without the

glass.

4.2 Calibration

Our stereo fusion system requires several stages of calibration prior in order to estimate depth information.

This section summarizes our calibration processes.
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Refractive stereo of short baseline Long-baseline stereo

Figure 4.1: The schematic diagram of our stereo fusion system. A point p is captured by both the
refractive stereo and the binocular stereo module.

Figure 4.2: Our system prototype.
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4.2.1 Geometric Calibration

We first calibrate the extrinsic/intrinsic parameters of the cameras, including the focal length of the

objective lens, the center point of the image plane and the lens distortion in order to convert the image

coordinates into the global coordinates.

For the geometric calibration, we captured 14 different poses of a chessboard as shown in Fig. 4.3.

This allows us to derive an affine relationship between the two cameras and rectify the coordinates of

(a) Chessboard images (b) Estimated Extrinsic Results

Figure 4.3: (a) shows the multiple images captured for different poses of a chessboard. In our experiment,
we utilizes 14 calibration images. (b) presents the estimated poses of the stereo system with respect to the
chessboards.

these cameras with respect to the constraint epipolar line [31].

However, since we do not have the direct image on the refractive module for a scene, first we need to

recover a synthetic direct image (see Sec. 5.1.5). Then, the epipolar constraint is satisfied by applying the

transformation to the synthetic direct image.

4.2.2 Refractive Calibration

Refractive stereo requires additional calibrations of the optical properties such as glass thickness, the

refractive index and the essential point. Here we describe the calibration detail of the essential points.

Analogous to the epipolar line in binocular stereo, refractive stereo forms an essential point e, where

the essential lines forge to the essential point e outside the image plane, i.e., a refracted point pr passes

through an unrefracted pixel pd and reaches the essential point e on the essential line (see Fig. 2.2(b)).

Gao and Ahuja [11, 12] estimated the essential point by solving an optimization problem with a

calibration target at a known distance. They precomputed the positions of the essential points for all

angles by manually adjusting the normal axis of the glass, so that the accuracy of estimating the essential

points does not depend on a target scene.

– 14 –



Instead of placing an target at a known distance and solving the optimization problem, Chen et

al. [6] directly estimated the essential point on target scene images with a fact that all essential lines meet

at the essential point. They estimated the position of the essential point by computing intersection points

of lines passing through each matching point on the superposed images with and without the medium.

This method is considerably simpler than solving the optimization problem [11,12]; however, the goal

of refractive stereo is to estimate the corresponding point of a pixel. In that sense, this method makes

the calibration process become a chicken-and-egg problem. On the other hands, searching corresponding

features with SIFT [6] is not consistent often such that the calibration accuracy is bound to the SIFT

performance.

(a) Without the medium 
(unrefracted image)

(b) With the medium
(refracted images) (c) Overlapped images

(f) Essential point estimation(d) Connecting points (e) Close-up view

Figure 4.4: (a) and (b) We first captured a chessboard with and without the medium for the target
poses of the medium. (c) After extracting corner points on the chessboard, we superposed the two images
for each pose of the medium. (d) and (e) Then, a line connecting corresponding points for each corner is
drawn on the overlapped image. (f) The extended red lines that link the correspondences of features forge
to an essential point outside the image. Therefore, an essential point of a pose is estimated by arithmetic
mean of the line-by-line intersection points.

Our calibration method takes advantages of the both methods [6, 12] to estimate the essential points

with 36 poses of the refractive medium on the rotary stage in advance. We take an image of a checkerboard

without the medium once to compare it with other refracted images in different poses of the medium.

Once we take a refracted image in a pose, we extract corner points from the both direct and refracted

images as shown in Fig. 4.4(a) and (b). Note that the same feature points appear at different positions

due to refraction. Superposing these two images, we draw lines by linking the corresponding points with

all feature corners with the fact observed by Chen et al. [6] (Fig. 4.4(c)). We then compute the arithmetic

mean of the coordinates of the intersection points to determine an essential point per rotation angle
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Figure 4.5: (a) presents the calibrated results of the 36 essential points (blue dots) in our system. (b)
shows an example of the locations of 36 refracted points (orange dots) from a direct point (without the
medium, red point) in the coordinates of (763,229) at a distance of 30 cm. The location of the direct point
has been refracted to 36 different positions per rotation due to refraction.

(a) (b) (c) (d)

Figure 4.6: (a) and (b) show the RGB color patches and the linearized RGB color patches on the
camera of refractive module with the medium. Also (c) and (d) are the RGB and linearized RGB color
patches on the other camera of a binocular module.

(Fig. 4.4(f)). We repeat this process with the 36 rotation poses of the medium predetermined in 10-degree

intervals. Fig. 4.5 shows the estimated essential points.

4.2.3 Color Calibration

Matching costs are calculated by comparing the intrinsic properties of color at the feature points. Since

we introduce a transparent medium on a camera in binocular stereo, it is critical to achieve consistent

camera responses with and without the medium. Note that we need to match color characteristics between

the camera with a transparent medium on the refractive module and the the other camera without the

medium.

To do so, we employ a GretagMacbeth ColorChecker target of 24 color patches. We first capture an

image from the refractive module with the medium, and an image from the other camera without the
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medium. Then, we linearize the two RGB images with known gamma values by inverse gamma correction.

For the 24 color patches, now we have two set of linear RGB colors, A and B (cameras with and without

the medium with inverse gamma correction), which are measured from the both cameras (Fig 4.6). Note

that the dimension of the A and B is both 24× 3. Now, we determine a 3× 3 affine transformation M of

A to B as a camera calibration function using least-squares [16].

We apply this color transform M for the linear RGB image which is generated from the images taken

by the camera with the medium. It produces a reconstructed image as if the image is taken from the

refractive module camera having consistent color responses with the other camera without the medium.
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Chapter 5. Depth Reconstruction in Stereo Fusion

Our stereo fusion workflow is composed of two steps. We first estimate an intermediate depth map from

a set of refractive stereo images (from the camera with the medium) and reconstruct a synthetic direct

image. Then, this virtual image and a direct image (from the other camera without the medium in a

baseline) are used to estimate the final depth map referring to the intermediate depth map from refractive

stereo. Fig. 5.1 overviews the workflow of our stereo fusion method.

Refracted 
images 

A synthetic 
direct image Recover a 

direct image 

A final 
depth map 

An image 
from 

binocular 
stereo 

Refractive 
stereo 
module 

Binocular 
stereo 
module 

An initial 
depth map 

(a) Our refractive stereo method 

(b) Our stereo  
fusion method 

Hardware 

Output 

Figure 5.1: Schematic diagram of our stereo fusion method. (a) Our refractive stereo method estimates
an intermediate depth map from refractive stereo. (b) Our stereo fusion method reconstructs a final depth
map from a pair of an image from binocular stereo and a synthetic direct image using the intermediate
depth map.

5.1 Depth from Refraction

Depth reconstruction from binocular stereo has been well-studied including matching cost computation,

cost aggregation, disparity computation, and disparity refinement [26], whereas depth reconstruction from

refraction has been relatively less discussed. In this section, we describe our approach for refractive stereo

for reconstructing an intial depth map.

5.1.1 Matching Cost in Refractive Stereo

General binocular stereo algorithms define the matching cost volumes of every pixels per disparity [26],

where a disparity (proportional to the inverse of the depth [25]) implies a certain depth directly in

binocular stereo. This relationship can be applied for all the pixels in the stereo image uniformly. It is
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important to note that the disparity in refractive stereo however changes, different from binocular stereo,

by not only the depth but also the coordinates on the image plane and the pose of the medium. It means

that the refracted points of a single direct point could have different refractive disparities depending on

the coordinates on the image plane and the pose of the medium. We therefore define the matching cost

volumes for our refractive stereo based on the depth, rather than the disparity. This allows us to apply a

cost volume approach for refractive stereo.

5.1.2 Disparity- vs. Depth-based Matching Cost

Disparity is a bitmap metric which can be converted into depth if the focal length and the baseline of a

stereo system are known. Since the unit of disparity is pixel, the position of a corresponding point (r′, c′)

with a specific disparity disp for a pixel (r, c) can be computed by adding the disparity to the column of

the original pixel following:

(r′, c′) = (r, c+ disp), (5.1)

where the original pixel (r, c) lies on the right camera, and the corresponding pixel (r′, c′) is on the left

camera.

However, in the case of refractive stereo, the refractive disparity varies along the position of a pixel

on the image plane. If we uniformly sample the refractive disparity candidates over the every pixels on

the image plane, then the corresponding depths of the refractive disparities are completely different for

each pixel resulting in non-uniform depth resolutions per a pixel. Therefore, we need to use not disparity

but depth for the metric of matching costs.

There have been some works utilizing depth as a metric metric of matching costs. Okutomi and

Kanade [25] presented the inverse-depth-based volume having an important benefit which is proportionality

to disparity in a multi-baseline stereo system. In contrast to the multi-baseline stereo, refractive stereo

cannot satisfy the proportionality to disparity as pixel position also changes the relation between the

refractive disparity and depth. Therefore, we define a refractive matching cost volume as a depth-based

one.

Suppose we have a geometric position set P of the refracted points pr(pd, z, e) of a direct point pd at

a depth z (see Fig. 2.2) with an essential point e (e ∈ E): All R(pd, z) depends on the coordinates of the

unrefracted point pd and the depth z of the point:

P (pd, z) = {pr(pd, z, e)|e ∈ E} . (5.2)

This set P can be derived analytically by refractive calibration (Sec. 2.4) so that we precompute this

set P for computational efficiency, inspired by [12].
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Figure 5.2: A pixel pd on a direct image is refracted into different pixel positions depending on the
pose of the medium. We now assume that three poses of the medium of which essential points are e1, e2
and e3. (a) When the depth of pd is z, the color of the refracted pixels L(pd, z) would have high similarity
when Lambertian assumption holds. (b) However, if we test the depth of pd is z′ which is different from
the true depth z, L(pd, z

′) has low similarity since the positions of refracted pixels have wrong estimates.

We denote L as the set of colors observed at the refracted positions P , where l is a color vector in

a linear RGB color space (l ∈ L). Assuming that the surface of the direct point pd is Lambertian, the

colors of the refracted points L(pd, z) would be the same (see Fig. 5.2). We use the similarity of L(pd, z)

for the matching cost C of pd with a hypothetical depth z [15]:

C(pd, z) =
1

|L(pd, z)|
∑

l∈L(pd,z)

K(l − l). (5.3)

K is an Epanechnikov kernel [8] following:

K(l) =

 1− ‖l/h‖2, ‖l/h‖ ≤ 1

0, otherwise
, (5.4)

where h is a normalization constant (h = 0.01). l is a mean color vector of the all element in a set L. We

compute l with five iterations in L(pd, z) using the mean shift method [7] as:

l̄ =

∑
l∈L(pd,z)

K(l − l̄)l∑
l∈L(pd,z)

K(l − l̄)
. (5.5)

z in our refractive stereo is a discrete depth, of which range is set between 60 cm and 120 cm in 3 cm

intervals. Note that we build a refractive cost volume per depth for all the pixels in the refractive image.
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5.1.3 Cost Aggregation for Depth Estimation

In order to improve the spatial resolution of the intermediate depth map in refractive stereo, we aggregate

the refractive matching cost using a window kernel G.

Advanced cost aggregation techniques, such as guided image [13] and bilateral weights [22], require

a prior knowledge of the scene, i.e., a unrefracted direct image. However, we do not capture the direct

image in our experiments because this requires detaching the medium for every scene. Therefore, we first

aggregate the refractive matching costs using a Gaussian kernel G:

G(pd, qd) =
1

2πσ2
exp
−||pd − qd||2

2σ2
, (5.6)

where σ is 9.6.

We filter the refractive matching at a pixel pd in a depth z, where this kernel convolves C(pd, z) with

the matching costs of neighboring pixels with a weighting factor G(pd, qd) [30]:

CA(pd, z) =
∑
qd∈w

G(pd, qd)C(qd, z), (5.7)

where qd is a pixel inside a squared window w, of which size is 7× 7.

Finally, we compute the optimal depth Z(pd) of the point pd that maximizes the aggregated matching

costs:

Z(pd) = arg max
z

CA(pd, z). (5.8)

5.1.4 Synthetic Direct Image Reconstruction

Even though the levels of the two cameras are the same on the rail as traditional binocular stereo,

our stereo pair includes more than horizontal parallax due to the refraction effect. Prior to fusing the

binocular stereo and the refractive depth input, we first reconstruct a synthetic image Id (a direct image

without the medium) by computing the mean radiance of the set L(pd, Z(pd)) using the mean shift

method (Eq. (5.5)). Note that set L consists of colors gathered from the refracted images.
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(a) Initial refractive depth map (c) Refracted images

(e) Direct image (ground truth)

dp
3e

2e1e

( , )dL p z

(b) Refracted pixels

(d) Recovered synthetic image

Figure 5.3: (a) shows an initial depth map. (b) is the the computed positions of refracted pixels using
the estimated refractive depth. We recover a synthetic direct image (d) by compute arithmetic mean of the
refracted colors (b) on the refracted images (c).

Fig. 5.3 presents the initial depth map Z and the reconstructed synthetic direct image Id. If the

refractive depth estimates Z(pd) contains some errors, the resulting synthetic image Id have also contains

errors. However, the visual effect of the artifacts on the reconstructed image does not have significant

impact as the wrong depth estimates might be caused by the featureless regions.

5.1.5 Depth and Direct Image Refinement

Reconstructing the direct image allows us to apply a depth refinement algorithm with a weighted median

filter [21] by treating the synthetic direct image as guidance in order to fill in the holes of the estimated

depth map. The weighted median filter replaces the depth Z(pd) using the median from the histogram

h(pd, ·):

h(pd, z) =
∑
qd∈w

W (pd, qd)f(qd, z), (5.9)

where f(qd, z) is defined as follows:

f(qd, z) =

 1, if Z(qd)− z = 0

0, otherwise
. (5.10)
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W is a weight function with a guided image filter [13], defined as:

W (pd, qd) =
1

|w|2
∑

k:(pd,qd)∈wk

(1 + (ld(pd)− µk)(Σk + εU)−1(ld(qd)− µk)), (5.11)

where ld(pd) is a linear RGB color of pd on the direct image Id; U is an identity matrix; k is the center

pixel of window wk including pd and qd; |w| is the number of pixels in wk; µk and Σk are the mean vector

and covariance matrix of Id in wk. In our experiments, we set the size of wk as 9× 9, and ε as 0.001.

This median filter allows us to refine the hole artifacts in the depth map while preserving sound

depth. After refining the depth map, the direct image is reconstructed again with the updated depth

map. Fig. 5.4 shows the result of the refinement, which are the updated depth map and the direct image.

(a) Refined refractive depth map (c) Refined Synthetic direct image(b) Initial synthetic image

(d) Close-up view (e) Close-up view 

Figure 5.4: (a) is the refined depth map with weighted median filtering. A synthetic direct image (c) is
computed again using the refined depth map (a), used for binocular stereo later. (b) is the initial synthetic
image. The refined synthetic image has more details (e) than the initial synthetic image (d).

After obtaining the final synthetic direct image, we apply the color calibration matrix M (see Sec. 4.2)

to the synthetic image so that the synthetic image is used for improving the quality of a depth map by

comparing with the image taken from the other camera.

5.1.6 Optimal Number of Refractive Images

We conduct an additional quantitative experiment that measures the point-wise errors of depth estimates

in order to find out the optimal number of input refractive images, while maintaining the sufficient spatial

resolution of a refractive depth map. We compute the root-mean-square error (RMSE) of depths on a

planar surface, which is the red square (Fig. 5.5(a)). Fig. 5.5(b) shows that the RMSE decreases very

– 23 –



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or
 

Number of refracted images

(b)(a)

Figure 5.5: (a) The red square indicates the area used for finding an optimal number of input refractive
images. The book cover is a planar surface orthogonal to the camera optical axis with a constant depth.
(b) The depth error drops down fast significantly up to six refractive inputs with different angles. No
significant improvement is observed with more than six inputs.

fast while increasing the number of input up to six refractive images. Hence, we determine the optimal

number of input refractive images as six. Note that we use six refractive images with 60◦ intervals for

capturing results in this thesis.

5.1.7 Parallax Occlusion

In the case of binocular stereo, only a pair of left and right images is used; therefore, the depth output of

the binocular method suffers from typical occlusion artifacts. In contrast, we reconstruct a refractive

depth map from a set of refracted images (with the rotation of the medium pose in 360◦) so that the

refractive depth does not suffer from parallax occlusion.

5.2 Depth in Stereo Fusion

As described in Sec 2.2, our binocular stereo with a wider baseline allows us to discriminate depth with a

higher resolution than refractive stereo (equivalent to narrow-baseline stereo). We take inspiration from a

coarse-to-fine stereo method [2,4] to develop our stereo fusion method. Our refractive stereo yields an

intermediate depth map with a high spatial resolution, which is on a par with narrow-baseline stereo.

However, it is not surprising that the z-depth resolution of this depth map is discrete and coarse on

the other hand. We utilize the fine depth map from refractive stereo in order to increase the z-depth

resolution as high as possible with a high spatial resolution by limiting the search range of matching

cost computation in binocular stereo using the refractive depth map. To this end, we can significantly

reduce the chances of false matching while estimating depth from binocular stereo between the direct and

synthetic images. This enables us to achieve a fine depth map from binocular stereo, taking advantages

of a high spatial resolution in refractive stereo.
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5.2.1 Matching Cost in Stereo Fusion

Now we have a direct image Ib from the camera without the medium in the binocular module and the

synthetic image Id reconstructed from the refractive stereo module (Sec. 5.1.5) with its depth map. Depth

candidates with uniform intervals are not related linearly to the disparities with pixel-based intervals.

We hence define a cost volume for stereo fusion on the disparity instead in order to fully utilize the

image resolution. To fuse the depth from binocular and refractive stereo, we build a fusion matching cost

volume F (pd, d) per disparity for all pixels as next. The fusion matching cost F is defined as a norm of

the intensity difference:

F (pd, d) = ‖ld(pd)− lb(p′d)‖ , (5.12)

where p′d is a shifted pixel by a disparity d from pd; lb(p
′
d) is a color vector of p′d on image Ib.

5.2.2 Cost Aggregation in Stereo Fusion

To improve the robustness of cost matching, we employ the bilateral image filter W as weight again, as

shown in Eq. (5.9). The size of the kernel w is 9× 9, and the value of ε is 0.001.

Since the guided filter consists of multiple box filters, the efficient implementation would be feasible

through an optimization. However, applying the guided image filter on our refractive stereo fusion

algorithm caused a significant computational load while estimating a depth map. Therefore, we ended up

with choosing the bilateral filter alternatively. We could achieve a significant improvement in computational

cost, by applying it and narrow down the search range in our stereo fusion.

The aggregated cost of the fusion matching costs is defined as:

FA(pd, d) =
∑
qd∈w

W (pd, qd)F (qd, d). (5.13)

Here W is the bilateral image filter [30] defined as

W (pd, qd) = exp

{
−d(pd, qd)

σ2
s

− c(pd, qd)

σ2
c

}
, (5.14)

where d(pd, qd) is the Euclidean distance between pd and qd, c(pd, qd) is the sum of differences of colors of

RGB channels, σs and σc are the standard deviations for spatial distance and color difference. In our

experiment, we select the window size, σs and σc as 9, 7 and 0.07.

Suppose the depth of point pd is estimated as Z(pd) from refractive stereo. As we compute the

refractive matching cost and aggregate the cost per discrete depth interval ∆z in refractive stereo, let the

actual depth of pd be in between (Z(pd)−∆z) and (Z(pd) + ∆z) as Zprev and Zpost. The corresponding

disparities of Zprev and Zpost can be computed as dprev and dpost using Eq.(2.2). Note that dpost is
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(a) Depth map from binocular stereo

(b) Depth map from our stereo fusion
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Figure 5.6: The binocular depth map (a) includes artifacts due to false matching caused by occlusions,
featureless regions and repeated patterns. Using the intermediate refractive depth map (b), we can limit the
search range of a corresponding point pd between dpost and dprev for instance. This significantly reduces
false matching frequency in estimating depth.

smaller than dprev. We therefore estimate the optimal disparity D(pd) by searching the aggregated cost

volume FA(pd, d) within the range [dpost, dprev] as below:

D(pd) = arg min
d

FA(pd, d). (5.15)

Note that we compute Eq.(5.13) within the range of [dpost, dprev] exclusively for computational efficiency.

Fig. 5.6 shows an example of our method. The true disparity of an orange pixel on a scene (a) is

around 200. However, since the disparity of the minimal aggregated cost for the orange pixel is around

160, the orange pixel on a depth map from binocular stereo (a) has a wrong depth estimate. In order to

solve this artifact problem, we take a coarse-to-fine approach. We can guide the search range of disparity

as we already estimates the refractive depth map with less spatial artifacts. As we mentioned before, the

search range is set to [dpost, dprev]. In the end, the true disparity is correctly estimated in our final depth

map.
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Chapter 6. Results

We conducted several experiments to evaluate the performance of our stereo fusion method. We computed

depth maps, of which resolution is 1280×960 with 140 depth steps, on a machine equipped with an Intel

i7-3770 CPU and 16GB RAM with CPU parallelization (GPU-based acceleration would be feasible as

future work.) The computation times for estimating the depth map from six refractive inputs are ∼77

secs. for the first-half stage of refractive stereo and ∼33 secs. for the second-half stage of stereo fusion.

The total computation time on runtime is ∼110 secs. We precomputed the refracted essential points per

pixel in the image plane beforehand for computational efficiency.

(b) Refractive only stereo(a) Binocular only stereo

(c) Our stereo fusion (d) Scene 

Figure 6.1: The top two rows compares the three different depth maps of binocular only stereo (a),
refractive only stereo (b) from the intermediate stage of our fusion method and our stereo fusion (c) for a
scene (d). The depth map of binocular stereo depth is fine but suffers from false matching. Refractive
stereo presents depth without artifacts, but its depth is coarse and discrete. Our stereo fusion method
estimates depth as fine as binocular stereo without suffering any false match.

The two rows in Fig. 6.1 compares three different depth maps by binocular only stereo (a), refractive

only stereo (b) and our proposed stereo fusion method (c). Although the depth estimation of binocular

only stereo (a) appears sound, (a) suffers from typical false matching artifacts around the edges of the

front object due to occlusion. Refractive only stereo (b), obtained from the intermediate stage of our

fusion method, presents depth without artifacts, but the depth resolution is significantly discretized
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and coarse. Our stereo fusion (c) overcomes the shortcomings of the homogeneous stereo methods. It

estimates depth as fine as binocular stereo without severe artifacts.

In addition, we quantitatively evaluated the accuracy of our stereo fusion method compared with

others in Fig. 6.2(d). We measured three points in the scene using a laser distance meter (Bosch GLM

80) and compared the measurements by the three methods. The accuracy of our method is as high as the

binocular only method (aver. distance error: ∼2 mm), outperforming the refractive only method (aver.

error: ∼6 mm).

(ii)

(i)

(iii)

Figure 6.2: For a target scene, the ground truths and estimated depths of three points (i), (ii), and (iii)
are given (see Table 6.1).

Target point Binocular only
stereo [mm]

Refractive only
stereo [mm]

Our stereo fusion
[mm]

Ground truth
[mm]

(i) 856 (+2) 863 (+9) 856 (+2) 854
(ii) 784 (+2) 784 (+2) 784 (+2) 782
(iii) 873 (+3) 863 (-7) 873 (+3) 870

Table 6.1: For three points (i,ii,ii) appearing on Fig. 6.2, the estimated depth values are shown in this
table. Our refractive stereo cannot distinguish the differences of between (i) and (iii), which is 16mm.
However, our stereo fusion discriminate the depths as same level of binocular stereo.

We qualitatively compared our stereo fusion method with a global stereo method [3] (b), a local

stereo method [13] (c) and a refractive stereo method [6] (d) in Figs. 6.3, 6.4 and 6.5.
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We compared our proposed method with a renowned graphcut-based algorithm [3] with an image of

the same resolution. Global stereo methods in general allow for an accurate depth map, while requiring

high computational cost. It is not surprising that this global method was about eight times slower than

our method (see Figs. 6.3(b), 6.4(b) and 6.5(b)) even if it produces an elaborate depth map.

We also compared our method with a local binocular method [13], which computes the matching

cost as the norm of intensity difference and aggregates the cost using the weight of the guided filter [13].

Its computing time was ∼212 secs., which is almost two times slower than our method, with the same

scene (see Figs. 6.3(c), 6.4(c) and 6.5(c)) This local method struggles with typical false matching artifacts.

Also in terms of speed, our method computes the aggregated costs only for the a few candidates resulting

in high computation speed while the local stereo method needs to consider all aggregated costs for many

disparity candidates.

A refractive method using SIFT flow [6] is compared to ours (Figs. 6.3(d), 6.4(d) and 6.5(d) and

Figs. 6.3(e), 6.4(e) and 6.5(e)). The same number of six refractive images were employed for both methods.

While the refractive method suffers from wavy artifacts caused by SIFT flow and its depth resolution is

very coarse, typical to refractive stereo, our method estimates depth accurately with less spatial artifacts

in all test scenes.

6.1 Multi-baseline Stereo

Multi-baseline stereo methods such as trinocular stereo employ multiple views with various baselines.

In this sense, multi-baseline approach is the most similar method to our approach, where the refractive

stereo is equivalent to the short baseline stereo; the binocular stereo is equivalent to the long baseline

stereo.

We built a trinocular stereo setup, where the distance between the right and the middle camera is set

to 2 cm and the distance between the middle and the left one is set to 11 cm to yield multiple baselines.

For fair comparison, we compute the depth maps from the trinocular stereo in two ways. Fig. 6.6(b) and

Fig. 6.6(c) presents results of trinocular stereo. Fig. 6.6(b) is the result of a multi-baseline method [25],

where two pairs of matching costs are calculated from the short and the long baseline pairs, and these

costs are combined as total matching cost to yield a depth map. Also the aggregated costs are compute

with the guided filter.

Fig. 6.6(c) is another implementation of trinocular stereo. Similar to our coarse-to-fine approach, we

compute matching cost volumes from the short-baseline stereo pair and aggregate the volumes through

the guided filter to yield an intermediate depth map. We then use this depth map to narrow down the

search range of correspondence same as ours.

As shown in Fig. 6.6, our stereo fusion achieves an more elaborate depth map than the both trinocular
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stereo methods. We could speculate that our improvement is feasible as our refractive method utilizes the

oval shape of corresponding points. This oval-shaped patterns can provide unique signatures in computing

the correspondences in our system.
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(d)

(c)

(b)

(a)

(e)

Figure 6.3: The depth maps for a scene (a) are computed by four different methods. (b) and (c) show
global [3] and local binocular stereo [13] methods. (d) presents a refractive stereo method [6]. Our method
(e) estimates depth accurately without suffering from severe artifacts.
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(d)

(c)

(a)

(e)

(b)

Figure 6.4: The depth maps for a scene (a) are computed by four different methods. (b) and (c) show
global [3] and local binocular stereo [13] methods. (d) presents a refractive stereo method [6]. Our method
(e) estimates depth accurately without suffering from severe artifacts.
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(a)

(b)

(c)

(d)

(e)

Figure 6.5: The depth maps for a scene (a) are computed by four different methods. (b) and (c) show
global [3] and local binocular stereo [13] methods. (d) presents a refractive stereo method [6]. Our method
(e) estimates depth accurately without suffering from severe artifacts.
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(a)

(b)

(c)

(d)

Figure 6.6: Multi-baseline stereo methods are compared with our method. (a) is the scene image
captured by the camera of the refractive module. (b) is a depth map using a trinocular stereo method [25].
(c) is also a trinocular stereo method, implemented with the coarse-to-fine approach same as ours. (d) is
the result of our stereo fusion method with the same number of input images.
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Chapter 7. Discussions and Future Work

In this thesis, we proposed a stereo fusion system and workflow for estimating a depth map with less

artifacts and high depth resolution. Our refractive system enables us to obtain a depth prior which can

be used for increasing the final depth resolution with less artifacts. Synthetic image generation using the

estimated refractive depth map is used as a binocular stereo image to improve the depth resolution of the

refractive depth map as high as possible. Since coarse-to-fine approach reduces the computational time of

our process, we obtain a high-quality depth map faster than the global and even the local method.

We conducted the experiment to find out the optimal number of refracted images which produces

a refractive depth map with less artifacts. In the experimental results, we observed that six refracted

images would be enough for our case. However, the number of refracted images can be set according to

the purpose of an usage.

Our hardware design requires at least one rotation of the medium in order to obtain a depth map

using more than two refracted images. It restricts the applications of our system to the static scene

only. Also now the medium needs to be manually rotated. Nevertheless, we expect that we can solve the

problem by employing the auto-rotary stage for the refractive module and miniaturizing the refractive

module. The refractive module of our system currently fixed to the optical breadboard (see Fig. 4.2.). We

can reduce the size of the refractive part and place the medium in front of the camera with a body tube

connecting the refractive module with the camera. The refractive module of our system currently fixed to

the optical breadboard (see Fig. 4.2.). This direction will enable us to easily integrate the auto-rotating

refractive module with the existing binocular stereo systems.

Our pipeline currently consists of two steps: refractive depth estimation and stereo fusion. Since our

stereo fusion takes a coarse-to-fine approach, errors on the refractive depth map can be transferred to

the final depth map. Our assumption on this problem is that the refractive depth map usually have less

spatial artifacts due to the narrow-baseline and the oval-shape of corresponding points. In the future,

we expect that it is possible to overcome this problem by modifying the fusion algorithm. We will fuse

the two different depth maps using multi-scale approach, and obtain a final depth map by solving the

multi-scale problem using optimization.
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Chapter 8. Conclusions

We have presented a novel optical design, a mixture of binocular and refractive stereo and a stereo-fusion

workflow. Our stereo fusion system extracts depth information with high depth resolution and less artifacts

with competitive speed to other local and global binocular methods. We validate that our proposed

method takes the advantages of both traditional binocular and refractive stereo. Also quantitative and

qualitative evaluation shows that our fusion method outperforms the traditional homogeneous methods

in terms of artifacts and depth resolution. In addition, our stereo fusion can be easily integrated into any

existing binocular stereo, yielding a significant improvement in the number of artifacts.
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Summary

Stereo Fusion using a Refractive Medium on a Binocular Base

양안 기반 스테레오 시스템의 깊이 정보는 카메라 사이의 거리인 베이스라인에 따라서 영향을 받게 된다. 긴

베이스라인은 짧은 베이스라인보다 깊이를 구별하는 능력이 뛰어나지만, 깊이 정보의 공간적 결함이 많다.

반면 짧은 베이스라인은 깊이 정보의 결함이 긴 베이스라인일때 보다 더 적지만 디스페리티가 작기 때문에

깊이 해상도가 낮다. 본 논문에서는 서로 다른 스테레오 시스템을 융합하는 새로운 광학적 디자인을 제안한

다. 굴절 매질을 기존의 양안 기반 시스템에 장착하여 양안 시스템으로부터 긴 베이스라인의 장점과 굴절

매질 스테레오를 통해 짧은 베이스라인의 장점 두가지를 모두 가지는 깊이 정보를 획득할 수 있다. 또한 본

디자인에맞는깊이해상도와공간적결함의관점에서높은질의깊이맵을획득하기위한융합알고리즘또한

소개한다. 본 시스템의 성능은 질적 그리고 양적인 실험 결과를 통해 기존의 여러가지 스테레오 방법들과

비교하여 입증된다.
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