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초 록

단일 이미지에서 헤이즈를 제거하는 것은 심각한 불량조건문제(ill-posed problem)인데, 이는 정보가 매우

부족하기 때문이다. 일반적인 헤이즈 제거 알고리즘들은 대기 산란광(airlight)의 양을 자연적 이미지 통계

(natural image statistics)를 이용하여 희소한 초기값을 추정하고, 이것을 전파하여 조밀한 투과율(trans-

mission)맵을 도출하고 이것으로 헤이즈가 제거된 이미지를 복원한다. 본 학위논문에서는 불완전한 자연적

이미지 통계를 사용하는 대신 픽셀 값을 대기 벡터(atmospheric vector)로의 투영을 통해 희소 투과율 맵을

추정하는강인한알고리즘을제안한다. 또한,희소한헤이즈를전파하는문제는다른정규화(regularization)

문제와는 다르게 이미지의 깊이 정보와 높은 상관 관계를 갖는다. 한편, 일반적인 격자형 마르코프 임의장

(Markov random fields)을 이용하면 헤이즈 전파 시 이미지 내에서 깊이 값이 급격히 변하는 지점에서

아티팩트가 발생한다. 본 학위논문에서는 동일 깊이 근접장(iso-depth nearest-neighbor field)을 마르코프

임의장에 적용하여 더 정교한 헤이즈 전파를 실현하고, 이를 통해 헤이즈 제거 시 깊이 변화가 급격한 곳에

서 발생하는 아티팩트를 감소시킬 수 있다. 또한, 이 방법은 다른 헤이즈 제거 알고리즘의 정규화 방법에

적용되어 아티팩트 감소를 기대할 수 있다.

핵 심 낱 말 헤이즈 제거, 비국소 정규화, 이미지 복원

Abstract

Removing haze from a single image is a severely ill-posed problem due to the lack of scene information.

General dehazing algorithms estimate airlight initially using natural image statistics and then propagate

the incompletely estimated airlight to build a dense transmission map, yielding a haze-free image. Prop-

agating haze is different from other regularization problems, as haze is strongly correlated with depth

according to the physics of light transport in participating media. However, since there is no depth

information available in single-image dehazing, traditional regularization methods with a common grid

random field often suffer from haze isolation artifacts caused by abrupt changes in scene depths. In

this paper, to overcome the haze isolation problem, we propose a non-local regularization method by

combining Markov random fields (MRFs) with nearest-neighbor fields (NNFs), based on our insightful

observation that the NNFs searched in a hazy image associate patches at the similar depth, as local haze

in the atmosphere is proportional to its depth. We validate that the proposed method can regularize

haze effectively to restore a variety of natural landscape images. This proposed regularization method

can be used separately with any other dehazing algorithms to enhance haze regularization.

Keywords dehazing, non-local regularization, image restoration
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Chapter 1. Introduction

1.1 Motivation

The atmosphere in a landscape includes several types of aerosols such as haze, dust, or fog. When we

capture a landscape photograph of a scene, often thick aerosols scatter light transport from the scene to

the camera, resulting in a hazy photograph. A haze-free image could be restored if we could estimate and

compensate the amount of scattered energy properly. However, estimating haze from a single photograph

is a severely ill-posed problem due to the lack of the scene information such as depth.

An image processing technique that removes a layer of haze and compensates the attenuated energy is

known as dehazing. It can be applied to many outdoor imaging applications such as self-driving vehicles,

surveillance, and satellite imaging. The general dehazing algorithm consists of two main processes. We

first need to approximate haze initially by utilizing available haze clues based on a certain assumption on

natural image statistics, such as a dark channel prior [12]. In this stage, most of dehazing algorithms tend

to produce an incomplete transmission map from the hazy image. Once we obtain rough approximation of

haze, we need to propagate the sparse information to the entire scene to reconstruct a dense transmittance

map, which yields a haze-free image.

Difficulty of dehazing arises from the existence of ambiguity due to the lack of the scene information.

First, the initial assumption on image statistics on natural colors in particular is insufficient to cover the

wide diversity of natural scenes in the real world, resulting in incomplete haze estimation. No universal

image statistics on natural colors can handle the dehazing problem. Moreover, most of propagation

algorithms with a common grid random field often suffer from haze-isolation artifacts. The amount

of haze in the atmosphere at each pixel is determined by its depth. If there is an abrupt change in

scene depth, the grid random field cannot regularize a transmission map with sharp-edge discontinuity

due to wrong propagation. In order to handle abrupt changes of haze density, we need a scene depth

information, even though it is unavailable in single-image dehazing.

In this paper, we propose a non-local regularization for dehazing that can propagate sparse airlight

estimates to yield a dense transmission map without suffering from the typical isolation problem. Our

regularization approach is developed by combining Markov random fields (MRFs) with nearest-neighbor

fields (NNFs) searched by PatchMatch [2]. We found that the NNFs searched in a hazy image associate

patches at the similar depth. Since no depth information is available in single-image dehazing, we utilize

the NNFs information to infer depth cues for propagating hidden states of scattered light, which is

exponentially proportional to depth [19]. To the best of our knowledge, this approach is the first work

that combines MRF regularization with NNFs for dehazing. This proposed regularization method can

be used with any other dehazing algorithms to enhance haze regularization.

1.2 Contributions

Our contributions are:

• a simple but consistent estimation of transmission by projecting hazy signals onto an esti-

mated atmospheric vector, accounting for piecewise consistency of airlight, and

1



• a novel NNF-based non-local MRF regularization method that refines transmission maps

by adding more neighbors obtained from nearest-neighbor fields.

Most of these contributions have been presented in the following publication:

• Incheol Kim and Min H. Kim, Dehazing using Non-Local Regularization with Iso-Depth Neighbor-

Fields, 12th International Conference on Computer Vision Theory and Applications (VISAPP

2017), accepted (oral presentation).

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 describes background knowledge about a haze formation

model and Markov models for haze regularization. Chapter 3 introduces related works on dehazing

method and haze regularization methods. Chapter 4 explains the details of our dehazing and haze

regularization algorithms. Chapter 5 shows the results of our method. We share remaining issues in our

method and future works in Chapter 6. Finally, Chapter 7 concludes this thesis.

2



Chapter 2. Background

This chapter provides a brief overview of background knowledge.

2.1 Haze Formation Model

Haze is an aerosol that consists of ashes, dust, and smoke. Haze tends to present a gray or bluish hue [19],

which leads to decrease of contrast and color fidelity of the original scene radiance. As the amount

of scattering increases, the amount of degradation also increases. This phenomenon is mathematically

defined as a transmission that represents the portion of light from the scene radiance that is not scattered

by participating media.

The relationship between the scattered light and the attenuated scene radiance has been expressed as

a linear interpolation via a transmission term commonly used in many dehazing algorithms [19, 20, 9, 10]:

I (x) = t (x) J (x) + (1− t (x))A, (2.1)

where I(x) is a linearized image intensity at a pixel x, J(x) is an unknown scene radiance, t(x) is

a transmission value, describing the portion of remaining light when the reflected light from a scene

surface goes to the observer through the medium, and A is a global atmospheric vector that is unknown

as well. The atmospheric vector A represents the color vector orientation and intensity of airlight in

the linearized sRGB color space, and along with the interpolation term (1− t (x)), the right additive

term in Equation (2.1) defines the intensity of airlight at the pixel x, where the airlight is a phenomenon

that acts like a light source, which is caused by scattering of participating media in the atmosphere [19].

Additionally, the atmospheric vector is independent of scene locations, i.e., the atmospheric light is

globally constant, while the airlight is spatially-varying due to its dependency of scene depths.

The number of scattering is closely related to the distance that light travels, i.e., the longer light

travels, the more scattering occurs. Therefore, the transmission decays as light travels. Suppose that

haze is homogeneous; this phenomenon then can be written as follows:

t (x) = e−βd(x),

where β is the scattering coefficient of the atmosphere [20] that controls the amount of scattering, and

d(x) is the scene depth at the pixel x.

The goal of haze removal is to estimate transmission t and an atmospheric vector A so that scene

radiance J can be recovered from the transmission t and the atmospheric vector A by the following:

J (x) =
I (x)− (1− t (x))A

max (t (x) , ε)
,

where ε is a small value to prevent division by zero. The process of haze removal is shown in Figure 2.1.

3



(a)

(c) (d)

(b)

Figure 2.1: The process of haze removal. (a) The picture shows an input outdoor hazy image. (b) The
atmospheric light map estimated from (a), i.e., the intensity map of haze that are full of airlight without
any scene radiance. (c) The transmission map estimated from (a), which is closely related with scene
depths of (a). (d) The final dehazed result that is generated by using Equation (2.1) with (a) – (c).

2.2 Haze Regularization

2.2.1 Motivation

In transmission estimation, the most widely used scheme is to compute transmission values in a patch-

wise manner instead of pixel-wise computation in order to enhance the fidelity of estimation. However,

the transmission values are not always constant within a patch, i.e., when there is an abrupt change

in depths within a patch; therefore, the computed map may have many blocky artifacts that degrade

the quality of dehazed results. Further, some methods include an outlier rejection stage to enhance the

quality of haze removal, so some values may be missing after estimating transmission values. For these

reasons, the necessity of regularization and propagation arises to yield a high-quality transmission map

with sharp edge-discontinuities. See Figure 2.2.

We briefly describe a background knowledge of the hidden Markov model, and Markov random fields

that are commonly used in haze regularization.

4



input

transmission dehazed

Figure 2.2: The leftmost picture is an input hazy image. The upper image in the second column shows
the estimated transmission map with blocky artifacts and outliers from the input image. The lower
image in the second column is the regularized transmission map from the upper one. The third column
represents the dehazed results from the corresponding transmission maps in the second column.

2.2.2 Hidden Markov Model

A hidden Markov model (HMM) is a commonly-used technique to infer original signals from distorted

input signals. Figure 2.3 shows an example of applying an HMM model to real data. Suppose there

are N latent states, where each latent state can take K possible state instances. See Figure 2.4. The

goal of inference on an HMM is to find the best sequence of the latent states given their observation

values. In case of brute force estimation, we need to check O
(
KN

)
cases by putting each possible state

instance and compute the probability, which is an NP-hard problem. Under Bayesian assumption, we

can ignore all states that are not connected, meaning that unconnected states are independent to each

other from the perspective of probability. Thus, we need to check connected states only, which is much

easier than the brute force approach.

The maximum a posteriori (MAP) estimate of the HMM in Figure 2.4 is given as

ŵMAP = arg max
w1...K

Pr (x1...N |y1...N ) . (2.2)

Since

Pr (x1...N , y1...N ) = Pr (x1...N |y1...N ) Pr (y1...N ) , (2.3)

we can decompose a joint probability into the multiplication of one probability and its conditional

probability. Supposing that the observation probability Pr (y1...N ) in Equation (2.3) is constant, we can

5
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(a) (b)

Figure 2.3: (a) The red line shows latent constant signals with value 0, which is to be estimated,
and blue plot represents the input signals distorted by normally distributed noise. (b) The hidden
Markov model (HMM) describes the signals shown in (a). The gray circles denote observation values
that correspond to the blue spiky curve in (a). The white circles describe latent states, which is the red
line in the case of (a). In HMM estimation, latent states are to be estimated from observations.

equate the joint probability and the conditional probability in MAP estimation, which is written as

ŵMAP = arg max
w1...K

Pr (x1...N |y1...N ) ≡ arg max
w1...K

Pr (x1...N , y1...N ) .

If we take negative log function on the joint probability, this is written as

arg min
w1...K

(− log (Pr (x1...N , y1...N ))) .

Based on the HMM model in Figure 2.4, data observation probabilities are independent, so the joint

probability term Pr (x1...N , y1...N ) can be factorized as

Pr (x1...N , y1...N ) =

N∏
i=1

Pr (xi, yi).

Each factorized joint probability consists of likelihood and prior terms based on the HMM model in

Figure 2.4, which is written as

Pr (xi, yi) = Pr (yi |xi ) Pr (xi |xi−1 ) .

Based on Figure 2.4, Pr (yi |xi ) is a likelihood term that is a connection between one latent state and

its observation value, and Pr (xi |xi−1 ) is a prior term that describes a probability of transition to one

latent state from its previous latent state. Finally, the MAP estimate in a factorized form is written as

ŵMAP = arg min
w1...K

(− log (Pr (x1...N , y1...N )))

= arg min
w1...K

(
−

N∑
n=1

log [Pr (yi |xi )]−
N∑
n=2

log [Pr (xi |xi−1 )]

)
.

Suppose we estimate the kth latent state ŵMAP
k . Then, the MAP estimate of the kth variable is

ŵMAP
k = Pr

(
xk = ŵMAP

k , yk
)

= arg min
w1...K

(
−
k−1∑
i=1

log [Pr (yi |xi )]−
k−1∑
i=2

log [Pr (xi |xi−1 )]

)
+ Pr (yk |xk ) .

6
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Figure 2.4: A hidden Markov model with N latent states and observations. The gray circles denote
input observations values, and the white circles model latent states to be estimated. Each intermediate
latent state is connected by its previous latent state, and connects its observation and next latent state.
Each observation node are independent to each other since they are not connected to each other. This
means that observation values do not affect the others and are not affected by the others as well.

This can be solved in a dynamic programming fashion since the previous probabilities,

−
k−1∑
i=1

log [Pr (yi |xi )]−
k−1∑
i=2

log [Pr (xi |xi−1 )],

do not affect the current latent state xi, so we do not need to compute the previous probabilities again.

This is a basic idea of Viterbi’s decoding algorithm [29] that infers latent states in a first-order sequential

HMM.

2.2.3 Markov Random Fields

An HMM can be used to describe sequential noisy data to infer its latent variables; however, higher-

dimensional data such as images cannot be modeled with any HMM. In this case, we can establish an

undirected graphical model of random variables that can represent data of a grid shape. This model is

called a Markov random field (MRF). Like the case of Equation (2.2), the joint probability distribution

of the MRF in Figure 2.5 is written as

Pr (x |y ) =
1

Z

∏
i,j

ψij (xi, xj)φ (xi, yi), (2.4)

where Pr (x |y ) is the joint probability distribution of the MRF, ψij (xi, xj) is a prior term between two

latent variables xi and xj , φ (xi, yi) is a likelihood between a latent variable xi and its observed value yi,

and Z is a normalization factor. Inference on a joint probability of an MRF given by Equation (2.4)

is accomplished by maximizing the posterior distribution function Pr (x |y ). However, unlike an HMM,

the grid MRF has cycles, so obtaining the exact MAP estimate is infeasible since the number of paths

from one state to another is infinite. Instead, we can obtain an approximate MAP estimate by inferring

locally maximal joint probabilities so that we only need to compute suboptimal MAP estimates, whereas

the globally optimal solution was computed in inferring a first-order sequential HMM.

2.2.4 MRF Estimation

There are two categories of MRF estimation methods in terms of a state space: discrete and continuous.

Discrete Space Estimation Discrete MRF solvers are basically a combinatorial optimization. They

explore the discrete state instance space and compute the joint distribution for each combination of

states. Then, a combination of states that locally maximizes the joint distribution is chosen as an MAP
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Figure 2.5: A grid MRF model. The gray nodes represent observed values, and white nodes are latent
states to be estimated. Unlike the HMM shown in Figure 2.4, the MRF consists of undirected edges,
so the joint probability is affected by all connected variables, whereas in an HMM only nodes that are
pointed by others’ pointing edges are affected.

estimate. Belief propagation [22], graph cut-based [6], iterated conditional mode [4], and tree-reweighted

message passing algorithm [30] are representative discrete MRF solvers.

Continuous Space Estimation Algorithms in this category compute the optimal estimate by relaxing

an original discrete state space to a continuous state space. For instance, convex relaxation of MRFs [8,

25, ?] is used to impose smoothness or continuity constraints for low-level vision problems such as

denoising [23].
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Chapter 3. Related Work

Previous works on dehazing can be grouped into three categories: multiple image-based, learning-based,

and single image-based approaches.

3.1 Multiple Image-based Dehazing

Since removing haze in the atmosphere is an ill-posed problem, several works have attempted to solve

the problem using multiple input images, often requiring additional hardware. Schechner et al. capture

a set of linearly polarized images. They utilize the intensity changes of the polarized lights to infer the

airlight layer [24]. Narasimhan et al. employ multiple images with different weather conditions to restore

the degraded image using an irradiance model [19, 20]. Kopf et al. remove haze from an image with

additionally known scene geometry, instead of capturing multiple images [13]. These haze formation

models stand on the physics of light transport to provide sound accuracy. However, these applications

could be limited at the cost to acquiring multiple input images.

3.2 Learning-based Dehazing

Learning-based methods have been proposed to mitigate the ill-posed dehazing problem using a trained

prior knowledge. From training datasets, they attempt to earn a prior on natural image statistics to

factorize the haze layer and the scene radiance from the hazy image. Tang et al. define haze-relevant

features that are related to the properties of hazy images, and train them using the random forest

regression [27]. Zhu et al. obtain the color attenuation prior using supervised learning [32]. They

found that the concentration of haze is positively correlated with the difference between brightness

and saturation, and they train a linear model via linear regression. Recently, a CNN-based single

image dehazing method is proposed [?]. However, no general statistical model can predict the diverse

distributions of natural light environments; hence, they often fail to restore hazy-free images that are

not similar to the trained dataset.

3.3 Single Image-based Dehazing

Owing to the ill-posedness of the dehazing problem, single image-based methods commonly rely on a

certain assumption on statistics of natural images. Most prior works have made an assumption on the

statistics of natural scene radiance [26, 28, 12, 21, 1, 10]. Tan and Tarel restore visibility by maximizing

local contrast, assuming that clean color images have a high contrast, but this causes overly saturated

results [26, 28]. He et al. exploit image statistics where a natural image in the sRGB color space should

include a very low intensity within a local region [12]. However, it often overestimates the amount of haze

if there is a large area having bright pixels. Nishino et al. employ scene-specific priors, a heavy-tailed

distribution on chromaticity gradients of colors of natural scenes, to infer the surface albedo, but they

also often produce over-saturated results [21].

Developing the natural image prior further, Fattal assumes that in the sRGB space, the color-line of

a local patch within a clear image should pass through the origin of the color space [10]. This can yield
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a clear and naturally-looking result, but it requires per-image tweaking parameters such as the gamma

value and the manual estimation of the atmospheric light vector. Li et al. suggest a nighttime dehazing

method that removes a glow layer made by the combination of participating media and light source such

as lamps [15]. Recently, a non-local transmission estimation method was proposed by Berman et al.,

which is based on the assumption that colors of a haze-free image can be approximated by a few hundred

distinct colors forming tight clusters in the RGB space [3].

In addition, an assumption on light transport in natural scenes is also used. Fattal assumes that

shading and transmission are statistically independent [9], and Meng et al. impose boundary conditions

on light transmission [18]. In particular, our airlight estimation follows the traditional approach based

on dimension-minimization approach [9], which allows for robust performance in estimating airlight.

3.4 Haze Regularization

Most single-image dehazing methods estimate per-pixel haze using a patch-wise operator. Since the

operator often fails in a large portion of patches in practice, regularizing sparse haze estimates is crucial

to obtain a dense transmission map for restoring a haze-free image. Grid Markov random fields (MRFs)

are most commonly used in many dehazing algorithms [26, 9, 7, 21, 3], and filtering methods are also used,

for instance, matting Laplacian [12], guided filtering [11], and a total variation-based approach [28, 18].

These regularization methods only account for local information, they often fail to obtain sharp depth-

discontinuity along edges if there is an abrupt change in scene depth.

Recently, Fattal attempts to mitigate this isolation problem by utilizing augmented Markov random

fields, which extend connection boundaries of MRFs [10]. However, this method does not search neighbors

in every region in an image since only pixels within a local window are augmented. For this reason, the

augmented MRFs cannot reflect all non-local information in the image, and in some cases, isolation

artifacts still remain. Berman et al. non-locally extend the boundary in estimating haze [3]; however,

they still regularize an initial transmission map by using Gaussian MRFs (GMRFs) with only local

neighbors. As a result, severe isolation problems occur in a region where there is an abrupt change of

scene depth. In regularization of our method, we extend neighbors in MRFs with iso-depth NNFs for

using additional non-local information to infer depth cues based on the physics of light transport.
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Chapter 4. Algorithm

In this section, we describe our dehazing method with non-local haze regularization method. We first

introduce how to estimate an atmospheric vector from a given image, and recover the clear image with

transmission values. We also explain our haze estimation method with the haze formation model, which

works in linear subspaces. In addition, we describe our outlier rejection method to exclude outlying

pixels that severely degrade the quality of dehazing. From the previous stage, we will have an incomplete

transmission map with many blocky artifacts due to the patch-wise haze estimation. We propose our

non-local haze regularization method to propagate the transmission values to build a dense and sharp

transmission map.

4.1 Haze Estimation

Since airlight is energy scattered in air, airlight tends to be locally smooth in a scene, i.e., local airlight

remains constant in a similar depth. In contrast, the original radiance in a scene tend to vary significantly,

naturally showing a variety of colors. When we isolate the scene radiance into a small patch in an image,

the variation of scene radiances within a patch tends to decrease significantly to form a cluster with

a similar color vector, assuming that the real world scene is a set of small planar surfaces of different

colors. Then, one can estimate transmission values with certain natural image statistics within a patch

based on the local smoothness assumption on scene depths.

Following this perspective of the traditional approach [9], we also define a linear subspace that

presents local color pixels in the color space. A linear subspace in each patch comprises two bases: a

scene radiance vector J(x) at a center pixel x and a global atmospheric vector A. In this space, a scene

depth is piecewise smooth, and the local pixels share the same atmospheric vector. Now we can formulate

dehazing as finding these two unknown basis vectors, approximating the transmission value t(x) that is

piecewise smooth due to the local smoothness of a scene depth. Figure 4.1 depicts the estimation process

for an overview.

4.1.1 Atmospheric Vector Estimation

Airlight is a phenomenon that acts like a light source, which is caused by scattering of participating

media in the atmosphere [19]. The atmospheric vector represents the airlight radiance at the infinite

distance in a scene, i.e., the color information of airlight itself. Therefore, the atmospheric vector does

not include any scene radiance information, and it only contains the airlight component. The region full

of airlight is the most opaque area in a hazy image. We follow a seminal method of airlight estimation

[12]. The atmospheric vector A is estimated by picking up the pixels that have the top 0.1% brightest

dark channel pixels and then choosing the pixel among them that has the highest intensity in the input

image. However, if there are saturated regions such as sunlight or headlights, maximum filtering of the

dark channel could be incorrect since those regions might have the highest (saturated) dark channel.

Also, we assume that the most opaque region is the most brightest within an image, and we therefore

discard the pixels that are within aforementioned saturated regions. We then select the 0.1% pixels

among the rest as He et al.’s method does, so that we can estimate the atmospheric vector consistently.
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by marginalization

Figure 4.1: (a) Extracting a patch from a hazy image. I(Ω) is a set of linearized color pixels in the
patch Ω that has a center pixel of x. The white dot indicates the center pixel x. (b) We initially estimate
the amount of haze using linear subspaces [19, 9]. A is an atmospheric vector of the image (a), I (x)
is the linearized center pixel x depicted as the white dot, and J (x) is the scene radiance vector of the
pixel I (x). The pixel I (x) is a linear interpolation of the vector A and J (x), and hence lies on the linear
subspace [the blue plane in (b)] spanned by those two vectors. The red dots describe pixels extracted
from I (Ω). The pixels are projected onto vector A to obtain a marginal distribution with respect to A.
The red arrow from the cluster denotes the amount of airlight that is determined from the minimum
value of the marginal distribution.

We subsequently average the chosen pixels to reject noise.

4.1.2 Transmission Estimation

We first assume that transmission is piecewise smooth. In Equation (2.1), the portion of haze at a pixel x

is determined by the term (1− t (x)) that indicates the amount of haze to be removed. We determine

the amount of a haze signal from given color signals within a patch. Suppose the given color signals in

each patch are linear combinations of two unknown bases, J and A, that form a linear subspace. If we

project the given pixels onto the atmospheric vector A, we can estimate the contribution of the haze

signal mixed into the input signals in the patch.

Supposing IA(Ω) is scalar projections of color vectors I(Ω) onto an atmospheric vector A in a patch

Ω (Figure 4.1), where the pixel x is located at the center, then it can be written as following [9]:

IA (Ω) = I (Ω) · A

‖A‖
, IA (Ω) ∈ R1×|Ω|.

We assume the airlight within a patch to be constant while the scene radiance might vary. In order to

focus only on the airlight component, it is necessary to obtain a marginal distribution of the surrounding

pixels with respect to the basis vector A, as shown in Figure 4.1(b).

The marginal distribution IA (Ω) describes the histogram of airlight components within a patch.

This distribution would have had a very low minimum value if it had not been influenced by piecewise

constant airlight. However, if we take the minimum projected value, there could be a large chance to take

12



an outlying value as the minimum. We use the i-th percentile value from the projected pixel distribution

to reject outliers effectively to achieve robust performance:

Imin
A (Ω) = Pi

k∈Ω
(IA (k)) , Imin

A (Ω) ∈ R1,

where Pi represents an i-th percentile value (i = 2).

The minimum percentile scalar projection onto an atmospheric vector corresponds to the amount

of haze of a pixel from its patch, and thus the minimum projection corresponds to the haze component

part in Equation (2.1), which is

(1− t (x))← Imin
A (Ω) .

As a result, the transmission estimate is written as follows:

t (x) = 1− Imin
A (Ω) .

Additionally, projection onto the atmospheric vector requires two bases (a pixel and an atmospheric

vectors) to be orthogonal. However, pixels within a patch are not necessarily orthogonal to the atmo-

spheric vector, so projection needs to be compensated for non-orthogonality. If a color vector has a

small angle with its atmospheric vector, then its projection will have larger value due to the correlation

between the two vectors. We attenuate the Imin
A by a function with respect to the angle between a pixel

vector and an atmospheric vector that is given by

t (x) = 1− f
(
θ̄
)
· Imin
A (Ω) ,

where θ is a normalized angle between a pixel vector and an atmospheric vector within [0, 1] . The

attenuation function f () is given by

f
(
θ̄
)

=
e−kθ̄ − e−k

1− e−k
, (4.1)

where the function has a value of [0, 1] in the range of θ̄. In this work, we set k = 1.5 for all cases. This

function compensates transmission values by attenuating the value Imin
A since the function has a value

close to 1 if θ̄ has a small value. See Figure 4.2(c).

The size of a patch is crucial in our method. If the size is too small, then the marginal distribution

does not contain rich data from the patch, resulting in unreliable estimation such as clamping. On the

contrary, an excessively large patch might include pixels in different scene depth and our estimation

stage takes the minimum value in the marginal distribution, and hence the transmission estimate will be

overestimated. In our implementation, we use patches of 15-by-15 pixels and it showed consistent results

regardless of the size of an image.

4.1.3 Removing Outliers

While our transmission estimation yields reliable transmission estimates in most cases, however, there

are a small number of cases that does not obey our assumption. We take them as outliers and mark them

as invalid transmission values, and then interpolate them in the regularization stage (see Section 4.2).

Narrow Angle Outliers Distant regions in an image such as sky, and objects whose color is grayish

have a similar color of haze. In the RGB color space, the angle between an atmospheric vector and the

color vector of a pixel in those regions is very narrow and the image pixel’s luminance is quite high. In
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Figure 4.2: (a) A hazy input image. (b) Each single pixel from the red and blue boxes is plotted in the
RGB space along with the atmospheric vector A. J1 and J2 in each plot correspond to the two pixels
extracted. (c) The attenuation function defined as Equation (4.1) is plotted as above. The red and blue
dots indicate the amount of attenuations of the red and blue patches. This plot shows that the amount
of attenuation increases as an angle between a color vector and an atmospheric vector decreases.

this case, unreliable estimation is inevitable since there is a large ambiguity between the color of haze

and scene radiance. As a result, unless we do not reject those regions, the transmission estimate will be

so small that those regions will become very dim in turn. For this reason, we discard the transmission

estimates, where the angle between an image pixel and an atmospheric vector is less than 0.2 radian, the

pixel’s luminance (L∗) is larger than 60 in the CIELAB space, and the estimated transmission value is

lower than a certain threshold: 0.4 for scenes having a large portion of distant regions and 0.1 for others.

Saturated Intensity Outliers When estimating an atmospheric light, we assumed that the most opaque

region in an image is the brightest area of the whole scene. However, pixels brighter than the atmospheric

light can exist due to very bright objects such as direct sunlight, white objects, and lamps in a scene.

Those pixels do not obey our assumption above, and hence this leads to wrong transmission estimation.

Therefore, we discard pixels whose luminance is larger than the luminance of the atmospheric light.

4.2 Non-Local Regularization using Iso-Depth Neighbor Fields

Once we calculate the initial estimates of transmission for every pixel, we filter out invalid transmission

values obtained from extreme conditions. The transmission estimation and outlier detection stages might

often yield incomplete results with blocky artifacts. We therefore need to regularize valid transmission

values in the image.

4.2.1 GMRF Model

As we mentioned above, the transmission is locally smooth. Therefore, in order to obtain a complete

transmission map having sharp-edge discontinuities, we need to regularize the incompletely estimated

transmission map using Markov random fields (MRFs). The probability distribution of one node in an

14



MRF is given by

p
(
t (x)

∣∣t̂ (x)
)

= φ
(
t (x) , t̂ (x)

)
ψ (t (x) , t (y)) , (4.2)

where t (x) is a latent transmission variable at pixel x, t̂ (x) is an initially estimated transmission value,

φ() is a data term of the likelihood between t(x) and t̂(x), and ψ is a smoothness prior of latent trans-

mission t(x) against neighboring transmission t(y) within a patch Ω, y ∈ Ω. While the data term φ()

describes the fidelity of observations by imposing a penalty function between the latent variable and

the observed value, the smoothness term ψ() enforces smoothness by penalizing the errors between one

latent variable and its neighboring variables.

The data term φ() is given by

φ
(
t (x) , t̂ (x)

)
= exp

(
−
(
t (x)− t̂ (x)

)2
σt̂(Ω)

2

)
,

where σt̂(Ω) is the variance of observation values t̂ within patch Ω that has the center at pixel x. The

data term models error between a variable and observation with in-patch observation variance noise via a

Gaussian distribution. The in-patch variance of observation values implies that the greater the variance

of in-patch observation is, the more uncertain the observation values are, resulting in giving less influence

from the data term on the distribution.

The smoothness term Ψ() is written as

ψ (t (x) , t (y)) =
∏
y∈Nx

exp

(
− (t (x)− t (y))

2

‖I (x)− I (y)‖2

)
,

where I () is a linearized pixel intensity of an image, and pixel y is in a set of neighbors Nx of pixel x. The

smoothness term encourages smoothness among one variable and its neighboring variables by penalizing

pairwise distances between them, where the distribution of the distances follows a Gaussian distribution.

If (t (x)− t (y))
2

is large, then it indicates that the distance between t (x) and its neighbor t (y) is large,

and hence the cost from the regularization term will also become large, which enforces strong smoothness

between them. ‖I (x)− I (y)‖2 in the denominator of the prior term controls the amount of smoothness

by exploiting information from an input image. This property implies that if two image pixels are

similar, then their transmission values are likely to be similar as well. On the contrary, it gives sharp-

edge discontinuity in transmission values along edges since the value of the denominator becomes large

when the difference between two pixels is large.

In fact, the probability distribution of an MRF over the latent variable t is modeled via a Gaussian

distribution. In this case, the MRF is formalized by using a Gauss-Markov random field (GMRF),

which can be solved by not only using computationally costly solvers, but also by a fast linear system

solver [17, 9].

By combining the two terms we can obtain a posterior distribution:

p
(
t (x)

∣∣t̂ (x)
)

= exp

(
−
(
t (x)− t̂ (x)

)2
σt̂(Ω)

2

) ∏
y∈Nx

exp

(
− (t (x)− t (y))

2

‖I (x)− I (y)‖2

)
. (4.3)

Finally, we formulate a cost function by taking the negative log of the posterior distribution [Equa-
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tion (4.3)] following [9, 10], which is written by

E (t) =
∑
x


(
t (x)− t̂ (x)

)2
σt̂(Ω)

2 +
∑
y∈Nx

(t (x)− t (y))
2

‖I (x)− I (y)‖2

.
The regularization process is done by minimizing the cost function, which is solved by differentiating

the cost function with respect to t and setting it to be zero.

(a) (b)

x

Figure 4.3: (a) The picture shows some sampled NNFs that associate pixels having similar scene depths.
The line with the same color denotes association of pixels in the same NNF. (b) An MRF model of the
node x from the patch in (a) associated with adjacent four neighbors and distant neighbors in the NNF.
Since the node x is located in the end point of the leaf, its adjacent pixels have very different transmission
values due to the depth discontinuity. As (a) shows, the neighbors connected with the same NNF have
very similar scene depths, and hence they give a more accurate regularization cue than the adjacent
neighbors do.

4.2.2 Iso-Depth Neighbor Fields

In conventional grid MRFs, a prior term (smoothness term in this text) associates adjacent four pixels

as neighbors for regularization. However, pixels in a patch lying on an edge may be isolated when the

scene surface has a complicated shape. In Figure 4.3(a), the leaves in the left side of the image have

a complicated pattern of edges, and the bricks lie behind the leaves. If we model a grid MRF on the

image, then pixels on the tip of the leaves will be isolated by the surrounding brick pixels. In this case,

smoothness of the leaf pixels will be imposed mostly by the brick pixels, where there is a large depth

discontinuity between them. In other words, a large scene depth discrepancy exists in the patch, and

thus if some pixels lying on the edge are only connected to their adjacent neighbors, the prior term will

enforce wrong smoothness due to the large depth discrepancy. As a result, those regions will be overly

smoothed out due to the wrong connection of neighbors.

While Besse et al. use the PatchMatch algorithm [2] to rapidly solve non-parametric belief propaga-

tion [5], we investigate neighbors extracted from a nearest-neighbor field (NNF) using the PatchMatch

algorithm and found that the NNF associates pixels at similar scene depths as shown in Figure 4.4. This
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Figure 4.4: Hazy images with sampled NNFs. The line with the same color denotes association of
pixels in the same NNF. As the pictures show, the NNFs associate pixels that have similar depths. By
adding these neighbors to MRFs, we can connect isolated pixels shown in Figure 4.3 for more accurate
regularization. As a result, the haze isolation problem can be mitigated with the insightful information.

insightful information gives a more reliable regularization penalty since the neighboring nodes in the

NNF are likely to have similar transmission estimates.

Thus, we add more neighbors belonging to the same NNF to the smoothness term and perform

statistical inference on the MRF along with them. We note that these long-range connections in regu-

larization are desirable in many image processing applications, addressed by other works [10, 16]. After

regularization, we use the weighted median filter [31] to refine the transmission map. Algorithm 1

summarizes our dehazing algorithm as an overview.

Algorithm 1 Dehazing using Non-Local Regularization

Require: an image I
Ensure: a result image J and a transmission map t

1: IL ← inverseGammaCorrection(I)
2: A← atmosphericVectorEstimation(IL)
3: for pixels x = 1 to n do
4: IA (Ω)← IL (Ω) · A

‖A‖
5: Imin

A (Ω)← Pi
k∈Ω

(IA (k))

6: t′ (x)← 1− f
(
θ̄
)
· Imin
A (Ω)

7: t̂ (x)← outlierRejection(t′ (x) , A, IL (x))
8: end for
9: NNF ← PatchMatch(I)

10: t← regularization(NNF, t̂, I)
11: JL ← (I − (1− t)A) /t
12: J ← gammaCorrection(JL)
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Chapter 5. Results

In this chapter, we validate our dehazing method with our non-local regularization method with other

existing algorithms. We evaluated our algorithm with a large number of outdoor hazy images obtained

from [10] to prove robustness, and we also present comparisons with state-of-the-art dehazing methods.

5.1 External Evaluation

5.1.1 Qualitative Comparison

Figures 5.8, 5.9, 5.10, 5.11, and 5.12 qualitatively validate the robust performance in dehazing the

common reference dataset of hazy scenes [10]. We compare the performance of our dehazing algorithm

with three state-of-the-art methods [12, 10, 3]. We were motivated to achieve consistent performance of

dehazing with less parameter controls like other image processing algorithms [?, ?]. Our method shows

competitive results to other method [10] that requires manual tweaking parameters per scene to achieve

plausible results.

5.1.2 Quantitative Comparison

We compare our method with the entire synthetic hazy image dataset provided by [10]. The synthetic

hazy images were generated by datasets that contain clear indoor and outdoor scenes, and their corre-

sponding depth maps. Table 5.1 reports the quantitative comparison of our method with other meth-

ods [12, 10, 3]. We also show the dehazed images used for the quantitative comparison in Figure 5.1.

Our method shows competitive and consistent results particularly in dehazed images.

He et al. [12] Fattal14 [10] Berman et al. [3] ours
church 0.0711/0.1765 0.1144/0.1726 0.1152/0.2100 0.1901/0.1854
couch 0.0631/0.1146 0.0895/0.1596 0.0512/0.1249 0.0942/0.1463

flower1 0.1639/0.2334 0.0472/0.0562 0.0607/0.1309 0.0626/0.0967
flower2 0.1808/0.2387 0.0418/0.0452 0.1154/0.1413 0.0570/0.0839
lawn1 0.1003/0.1636 0.0803/0.1189 0.0340/0.1289 0.0604/0.1052
lawn2 0.1111/0.1715 0.0851/0.1168 0.0431/0.1378 0.0618/0.1054

mansion 0.0616/0.1005 0.0457/0.0719 0.0825/0.1234 0.0614/0.0693
moebius 0.2079/0.3636 0.1460/0.2270 0.1525/0.2005 0.0823/0.1138
reindeer 0.1152/0.1821 0.0662/0.1005 0.0887/0.2549 0.1038/0.1459
road1 0.1127/0.1422 0.1028/0.0980 0.0582/0.1107 0.0676/0.0945
road2 0.1110/0.1615 0.1034/0.1317 0.0602/0.1602 0.0781/0.1206

average 0.1181/0.1862 0.0839/0.1180 0.0783/0.1567 0.0836/0.1152

Table 5.1: Quantitative comparisons of our method with other methods [12, 10, 3]. The error values are
computed from the entire synthetic hazy image dataset provided by [10]. All figures represent mean L1

error of the estimated transmission t (left value) and output image J (right value). Red figures indicate
the best results, and blue for the second best. For a fair comparison, parameters for each method,
such as display gamma for sRGB linearization and the airlight vector, were optimized for the highest
performance.
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Figure 5.1: Dehazed results for the quantitative comparison shown in Table 5.1. The first column
shows synthetic hazy images generated from the ground truth dataset [10] in the second column with
their corresponding depth maps. The remaining columns are recovered scene radiance maps by each
method. Each even row shows transmission maps corresponding to each algorithm. Our method yields
consistent results compared with other methods. Parameters for each method were optimized for the
highest performance for a fair comparison.
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Figure 5.2: We compare our regularization with other methods. The leftmost one is the original
image of cones. The first row shows dehazed results with our transmission estimation step and each
regularization method written at the lower right. We cropped the dehazed images in the first row to
highlight the influence of regularization methods in the second row. The third row presents a sequence
of cropped transmission maps in the same manner as the second row.

5.1.3 Regularization

We compare results of our method with those of state-of-the-art methods in terms of regularization.

Berman et al. regularize initial transmission estimates with a grid GMRF as shown in third and fourth

columns in Figure 5.3 [3]. Due to the lack of non-local information in regularization, some regions suffer

from the haze isolation problem as mentioned above. Other than using a grid MRF, Fattal takes an

augmented GMRF model for regularization, which extends neighbor fields within a local window [10].

However, it does not connect more neighbors for all pixels due to time complexity. As a result, some

regions are not fully recovered from the haze isolation problem. Figure 5.3 validates that our method

successfully removes haze even from a scene having abrupt depth changes with complicated patterns.

Figure 5.4 shows the intermediate stages in our regularization process of transmission (d) – (g),

along with our result of the house scene (c). We start our regularization from Figure 5.4(d) that has

outliers [represented as black pixels in Figure 5.4(d)]. In particular, Figures 5.4(e) and (f) compare the

impact of NNFs in the MRF regularization. When we regularize the initial estimate with only GMRFs,

certain regions with complex scene structures are over-smoothed due to the wrong smoothness penalty

as Figure 5.4(e) shows. We account for additional neighbors from NNFs to obtain a clearer transmission

map shown in Figure 5.4(f). Figure 5.4(g) shows the final transmission map that we refine with a

weighted median filter [31].

We also compare our regularization method with representative matting methods: the matting

Laplacian method [14] and the guided filter method [11] in Figure 5.2. While we use the guide image as

just a guide to smooth and enforce sharp gradient along edges on transmission estimates, both methods

are based on the assumption that an output and an input guidance form a linear relationship. As

described in Section 4.1, scene radiance varies largely while transmission does the opposite. Consequently,

the two methods follow the behavior of the scene radiance, which results in distorting the given estimates.
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Figure 5.3: Comparisons of dehazing in terms of regularization. The two rows are results from other two
methods: [10] using augmented GMRFs and [3] using traditional GMRFs, and the last row shows our
results (Insets: corresponding transmission maps). While other methods often fail to obtain sharp edge-
discontinuities in the images, our method yields clear recovered scene radiance maps as shown above.
Some notable regions are pointed with arrows.

As a result, our regularization method yields an accurate transmission map with clear-edge discontinuities

while the others overestimate the transmission estimates in turn.

5.2 Internal Evaluation

5.2.1 Running Time

We implemented our algorithm in a non-optimized MATLAB environment except the external Patch-

Match algorithm [2], and processed it on a desktop computer with Intel 4.0 GHz i7-4790K CPU and

32 GB memory. For the case of the house image of resolution 450 × 440 shown in Figure 4.1(a), our

algorithm took 6.44 seconds for running the PatchMatch algorithm to seek 17 neighbors, 8.32 seconds

for estimating an atmospheric vector, transmission values and rejecting outliers, 43.43 seconds for our

regularization stage, and 0.65 seconds for running the weighted median filter and recovering the scene

radiance, taking approximately 58.84 seconds in total.

Table 5.2 compare the computational performance of our method with traditional grid GMRFs and

our iso-depth GMRFs using images shown in Figure 5.8. We also shows computational costs of obtaining
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5.4: We present an example before and after applying our dehazing and regularization method.
(a) The hazy input image. (b) The recovered scene radiance map with the transmission map regularized
by grid MRFs (e). (c) The recovered scene radiance map with the final transmission map (g). Images
(d) – (g) compare transmission maps to show the influence of using iso-depth NNFs. All regularizations
are done using GMRFs. (d) The initial transmission estimates including discarded pixels (the black
pixels). (e) The regularized transmission map without NNFs. (f) The regularized transmission map
with NNFs. (g) The final refined map of (f) using the weighted median filter.

only NNFs with 17 neighbors using PatchMatch [2] in the third row. Dehazing with iso-depth NNF-

GMRFs takes 10.58 times more time; however, iso-depth NNFs give richer information in regularization,

resulting in more exact scene radiance recovery.

5.2.2 Impact of Patch Size

Figure 5.5 shows the results of dehazing under varying patch sizes. Image (a) is an input image of

canon, the size of which is 600 × 524. Image (b) is severely over-saturated since the size of patches is

so small that each patch cannot contain rich information of scene structures, i.e., the patch failed to

reject the influence of highly-varying nature of scene radiance. On the other hand, as shown in image

(d), its airlight is underestimated since patches are too large to hold the assumption that transmission

is piecewise constant. This underestimation is exacerbated in distant regions where their scene depth

Dehazing house forest ny17 train snow castle cones Average

with grid GMRFs 6.43 26.55 27.51 7.74 18.88 12.84 6.41 15.19
with NNF-GMRFs 58.84 305.48 305.06 73.06 191.76 129.18 61.12 160.64

(for computing NNFs only) (6.44) (31.82) (28.48) (7.15) (18.54) (11.01) (7.31) (15.82)

Table 5.2: Comparison of time performance of dehazing with the traditional grid GMRFs and our
GMRFs with iso-depth NNFs (unit: second). Refer to Figures 5.8, 5.9, 5.10, 5.11, and 5.12 for pro-
cessed images. The third row shows computational costs of only seeking NNFs with 17 neighbors using
PatchMatch [2] in our method.
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Figure 5.5: Comparisons to show the influence of a patch size in estimating transmission. (a) The
original canon image. (b) The dehazed image with a patch size of 3×3 where severe color clamping
happens. (c) The dehazed image with a patch size of 15×15, where the patch size is our choice for all
results. (d) The dehazed image with a patch size of 29×29 in which the airlight in distant regions is
underestimated.

changes rapidly. In our experiment, we found that the patch size of 15×15 works properly for most

scenes, and therefore we take the same patch size for all results in this paper.

5.2.3 Outlier Removal

We validate our outlier-rejection process. Figure 5.6 shows the regions in infinite scene depths occupy

a large portion of the image that is full of airlight in the two input images. In these regions, there is a

large ambiguity between airlight and scene radiance, and hence our method fails to produce a naturally

looking result as the second column shows. After we discard outliers having a narrow angle between the

atmospheric vector and the input color pixel, we could obtain high-quality scene radiance maps in the

third column.

We also show the influence of saturated intensity outliers as mentioned in Section 4.1.3. We estimated

an atmospheric vector under the assumption that the atmospheric light is the brightest all over a scene.
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input without rejection with rejection

Figure 5.6: Validation of our narrow angle outlier rejection method described in Section 4.1.3. In the
second column, the distant region represented as sky has an infinite depth, and hence our transmission
estimation stage estimates its transmission as being close to zero, which yields overly saturated results.
We obtained consistent results by our outlier rejection stage, as shown in the third column.

As Figure 5.7 presents, without rejecting saturated intensity outliers, transmission of those pixels will

be severely overestimated due to their high luminance. We can also reject those regions by increasing a

patch size; however, this will cause underestimation of airlight and cannot handle a large area as well.
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input

without rejection rejected

Figure 5.7: Validation of our saturated intensity outlier rejection process. In the second column, the
bright regions (the direct light at the upper right and the wall of the castle in the middle) are overly
saturated. Our outlier rejection succeeds to produce a consistent result by discarding those regions.
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Figure 5.8: Validation of consistency of dehazing. The first column shows input images. The second,
third, and fourth columns are results from [12, 10, 3], respectively. The fifth column presents our method’s
results. Each odd row shows dehazed results, and each even row represents corresponding transmission
maps. We use the set of parameters as described in Section 4.1.3. For the case of ny17 image, we set the
threshold of lower bound transmission to 0.4, and the others to 0.1 for removing narrow angle outliers.
Our method is competitive to other method [10, 3] that requires with manual tweaking parameters to
achieve plausible results.
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Figure 5.9: Validation of consistency of dehazing. The first column shows input images. The second,
third, and fourth columns are results from [12, 10, 3], respectively. The fifth column presents our method’s
results. Each odd row shows dehazed results, and each even row represents corresponding transmission
maps. We use the set of parameters as described in Section 4.1.3. For the case of snow image, we set the
threshold of lower bound transmission to 0.4, and the others to 0.1 for removing narrow angle outliers.
Our method is competitive to other method [10, 3] that requires with manual tweaking parameters to
achieve plausible results.
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Figure 5.10: Validation of consistency of dehazing. The first column shows input images. The second,
third, and fourth columns are results from [12, 10, 3], respectively. The fifth column presents our method’s
results. Each odd row shows dehazed results, and each even row represents corresponding transmission
maps. We use the set of parameters as described in Section 4.1.3. For the case of pumpkins image,
we set the threshold of lower bound transmission to 0.4, and the others to 0.1 for removing narrow
angle outliers. Our method is competitive to other method [10, 3] that requires with manual tweaking
parameters to achieve plausible results.
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Figure 5.11: Validation of consistency of dehazing. The first column shows input images. The second,
third, and fourth columns are results from [12, 10, 3], respectively. The fifth column presents our method’s
results. Each odd row shows dehazed results, and each even row represents corresponding transmission
maps. We use the set of parameters as described in Section 4.1.3. For the cases of tiananmen and lviv
images, we set the threshold of lower bound transmission to 0.4, and the others to 0.1 for removing
narrow angle outliers. Our method is competitive to other method [10, 3] that requires with manual
tweaking parameters to achieve plausible results.
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Figure 5.12: Validation of consistency of dehazing. The first column shows input images. The second,
third, and fourth columns are results from [12, 10, 3], respectively. The fifth column presents our method’s
results. Each odd row shows dehazed results, and each even row represents corresponding transmission
maps. We use the set of parameters as described in Section 4.1.3. For the cases of ny12 and mountain
images, we set the threshold of lower bound transmission to 0.4, and the others to 0.1 for removing
narrow angle outliers. Our method is competitive to other method [10, 3] that requires with manual
tweaking parameters to achieve plausible results.
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Chapter 6. Discussion and Future Work

We discuss a range of observations and limitations made throughout the development of our method.

6.1 Limitations

While our method produces consistent results for most cases; however, there are a small number of cases

where our atmospheric vector estimation stage fails. Figure 6.1 shows an example of our algorithm’s

failure in finding the correct atmospheric light. There are clouds in the image that occupy relatively

large regions but are not saturated, and therefore in the atmospheric vector estimation stage, our method

selected pixels in cloud regions as candidates of the atmospheric light, which is not correct. For this

reason, our transmission estimation stage severely overestimated the amount of airlight, particularly

in distant regions in the scene as shown in Figure 6.1(b). We validated the limitation by picking up

the atmospheric vector of the image manually, and our algorithm yielded a naturally-looking result,

as the Figure 6.1(c) presents. In addition, if there is a large region that is grayish and thereby has a

narrow angle between an atmospheric vector and the region color, our algorithm fails to find correct

transmission estimates since there are too many outliers according to our outlier rejection stage, which

leads to unreliable regularization. We leave these problems as future work.
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Figure 6.1: Our failure case with a landscape image. Image (a) shows the input image, and Image (b)
presents our result with the same set of parameters described. Image (c) is our result produced with the
manually-tweaked atmospheric vector.
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Chapter 7. Conclusion

We have presented a dehazing method based on marginalization. Unlike existing single image dehazing

methods, our method focuses on the airlight component in the hazy image formation model rather

than relying upon scene radiance priors. Thanks to the simplicity of airlight properties, our algorithm

yields consistent results. In addition, we use consistent parameters over all input images, thereby also

reducing the necessity of cumbersome scene-specific parameter tweaks. We also proposed non-local

regularization with iso-depth neighbor fields. Even though regularization is an essential process in

dehazing, traditional GMRF-based regularization methods often fail with isolation artifacts when there

is an abrupt change in depth, of which information is missing in single-image dehazing. We propose

a novel non-local regularization method that utilizes NNFs searched in a hazy image to infer depth

cues to obtain more reliable smoothness penalty for handling the isolation problem. We validated the

robust performance of our method with extensive test images and compared it with the state-of-the-art

single image-based methods. This proposed regularization method can be used separately with any other

dehazing algorithms to enhance haze regularization.
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