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Abstract iii

Abstract

The aim of this thesis is to develop a colour reproduction system for high-dynamic-range (HDR)

imaging. Classical colour reproduction systems fail to reproduce HDR images because current char-

acterisation methods and colour appearance models fail to cover the dynamic range of luminance

present in HDR images. HDR tone-mapping algorithms have been developed to reproduce HDR

images on low-dynamic-range media such as LCD displays. However, most of these models have

only considered luminance compression from a photographic point of view and have not explicitly

taken into account colour appearance. Motivated by the idea to bridge the gap between cross-

media colour reproduction and HDR imaging, this thesis investigates the fundamentals and the

infrastructure of cross-media colour reproduction. It restructures cross-media colour reproduction

with respect to HDR imaging, and develops a novel cross-media colour reproduction system for

HDR imaging. First, our HDR characterisation method enables us to measure HDR radiance values

to a high accuracy that rivals spectroradiometers. Second, our colour appearance model enables us

to predict human colour perception under high luminance levels. We first built a high-luminance

display in order to establish a controllable high-luminance viewing environment. We conducted a

psychophysical experiment on this display device to measure perceptual colour attributes. A novel

numerical model for colour appearance was derived from our experimental data, which covers the

full working range of the human visual system. Our appearance model predicts colour and lumi-

nance attributes under high luminance levels. In particular, our model predicts perceived lightness

and colourfulness to a significantly higher accuracy than other appearance models. Finally, a com-

plete colour reproduction pipeline is proposed using our novel HDR characterisation and colour

appearance models. Results indicate that our reproduction system outperforms other reproduction

methods with statistical significance. Our colour reproduction system provides high-fidelity colour

reproduction for HDR imaging, and successfully bridges the gap between cross-media colour repro-

duction and HDR imaging.
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Chapter 1

Introduction

This chapter provides a brief introduction to motivate the thesis and describes its principal contribu-

tions. It summarises the main structure of this document with a short overview of the methodology

and results.

1.1 Motivation and Objective

We live in a world of image-driven media. On a computer, a television, or in a newspaper, we

look at reproduced images every day. We are communicating and archiving visual information of

the real world through image reproduction. Faithfulness is the most important factor in this visual

communication. If the original and reproduction were different, our visual communication would

be deteriorated, introducing miscommunication. In order to achieve high fidelity in reproducing an

image, the image data captured by a camera should match the original scene, and the captured

image should be displayed on a monitor or in a photograph as faithfully as recorded in the image

data. The image in visual communication comprises various information, e.g., colour, texture, and

visual story. Among them, colours form a fundamental base of visual communication. It is important

to achieve high fidelity in reproducing colours for visual communication. This topic has been broadly

researched as the study of cross-media colour reproduction [Morovic, 2008].

In the past decade, imaging technology has leaped into a new era by significantly extending the

dynamic range in capturing real-world luminance. The working range of common imaging devices is

limited by the capacity of the hardware. For instance, a common digital camera captures luminances

by using a solid-state sensor, which yields 12-bit depth of signals as integers (e.g., Nikon D100). If

a scene that we need to capture with the camera contains a wider range of luminances, such as ten

orders of magnitude, we would only be able to capture partial luminance information due to the

bleaching and saturation of sensor signals [see Figure 1.1(a)]. This problem was first addressed

by Mann [1993]. To overcome the saturation problem in sensing real-world luminance, Mann

introduced an innovative capture technology called high-dynamic-range (HDR) imaging. Instead of

taking only one picture, Mann captured the scene (that may have high-dynamic-range luminances)

as multiple images, scanning the required dynamic range with various exposure settings with a low-

dynamic-range (LDR) camera. The multiple exposures were then concatenated into an HDR image.
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As a result, HDR imaging can cover most of the dynamic range of real-world luminance, solving the

sensor saturation problem of the camera [see Figure 1.1(b)].

HDR imaging was a sensational innovation in capturing the real world and has been broadly

used in the graphics and electronic engineering fields. However, even though HDR imaging solves

the sensing problem when capturing, it introduces another problem in reproducing the HDR image

data. As shown in Figure 1.1(b), the dynamic range of the captured HDR image exceeds that

of the displays significantly. Simple scaling methods are not enough to compress the range of

the HDR data. Consequently, most of the interesting information in the HDR image is lost by

discretisation of the display signal resolution. Hence, Tumblin and Rushmeier [1993] addressed this

reproduction problem. They proposed a non-linear mapping to reproduce the HDR image with a

similar appearance to that observed by the human visual system, called a tone reproduction operator

or tone-mapping algorithm.

In fact, HDR imaging [Mann, 1993; Debevec and Malik, 1997; Mitsunaga and Nayar, 1999]

and tone reproduction operators [Tumblin and Rushmeier, 1993; Fattal et al., 2002; Durand and

Dorsey, 2002; Reinhard et al., 2002] can be understood as advanced colour reproduction methods.

However, the state of the art in HDR imaging has focused on the extendibility of the dynamic range

from a tone-reproduction point of view and has not yet approached classical cross-media colour

reproduction. For example, the state of the art in HDR imaging does not have infrastructure such

as a modulated colour reproduction pipeline. As shown in Figure 1.1, the data flows in LDR and
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Figure 1.1: These two plots compare dynamic-range changes in low-/high-dynamic-range image repro-

duction. Imagine that we capture a real-world scene on a bright sunny day. In both plots, the real-world

scene is represented as the highest grey-scales bar on the left-hand side. We assume that the luminance

ranges ten orders of magnitude. We recalculate the intensity as a bit depth to compare with digital sig-

nal depth (33 ⇡ log2 1010 cd/m2). The middle bars in both plots represent dynamic ranges of camera

data. The middle bar in Plot (a) shows ⇠12 bits signal depth. This means the sensor in LDR imaging

is able to capture only a partial range of the real-world luminance. The middle bar in Plot (b) shows

the dynamic range of HDR image data, which is almost identical to that of the real world. Finally, the

bars on the right-hand side show the dynamic range of a typical display (about 8 bits of signal depth).

While the dynamic range of the display shows a minor difference to the LDR camera, the display range

shows a significant difference to that of the camera data for HDR imaging.
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HDR imaging are significantly different; hence, current cross-media colour reproduction technology

is not compatible. Historically, there have been efforts to bridge the gap between classical reproduc-

tion technology and HDR imaging. Göesele et al. [2001] utilised a colour management profile to

build an HDR image. Johnson and Fairchild [2003], Akyüz and Reinhard [2006], and Kuang et al.

[2007] attempted to combine a tone-mapping algorithm with a colour appearance model. How-

ever, without radical restructuring of the colour reproduction system, such hybrid solutions have

struggled with performance. With motivation to bridge the gap between cross-media colour repro-

duction and HDR imaging, this thesis investigates fundamentals and infrastructure of cross-media

colour reproduction. It restructures cross-media colour reproduction with respect to HDR imaging,

aiming to develop a novel cross-media colour reproduction system for HDR imaging.

1.2 Scope

Classical cross-media colour reproduction has been understood as a set of reproduction chains that

have three elements: device characterisation, colour appearance modelling, and gamut map-

ping [MacDonald, 1993]. Device characterisation describes a set of transforms to convert in-

put/output device signals to physically-meaningful device-independent signals, e.g., CIEXYZ co-

ordinates. Colour appearance modelling interprets these physically-meaningful device-independent

signals to perceptually-meaningful coordinates by taking the viewing environmental conditions into

account. Finally, gamut mapping is a visual enhancement procedure to minimise the perceived

gamut differences between the target and source media, aiming for plausible reproductions.

In this thesis, these fundamentals were investigated in the context of HDR imaging, result-

ing in the development of a high-fidelity colour reproduction system for HDR imaging. First, the

capturing stage in HDR imaging was researched with respect to device characterisation [see Fig-

ure 1.1(b)]. We suggest a novel device characterisation for HDR imaging. HDR characterisa-

tion converts the colour specifications of device-dependent HDR images into highly accurate and

physically-meaningful radiance values in the form of absolute CIEXYZ. This thesis focuses on gener-

ating physically accurate HDR radiance maps of static scenes, whereas constructing HDR images of

moving objects or transforming LDR images to HDR images is not handled in this thesis.

Acquiring physically-meaningful radiance maps is not sufficient for HDR colour communication

as the given physical colours under high luminance levels are perceived differently depending on

their viewing conditions (see Chapter 4 on more details of our experimental findings). Therefore,

perceptual attributes, e.g., lightness, colourfulness, and hue, of the given physical colour stimuli

under high luminances were measured experimentally and modelled as a novel colour appearance

model. Our colour appearance model links the description of physically-meaningful HDR radiance

maps to perceptually-uniform appearance attributes under extended luminance levels. In theory,

these two elements, HDR device characterisation and colour appearance modelling for high lumi-

nances, are sufficient for colour image reproduction unless the size of the colour gamuts of the

input/output media are significantly different [Morovic, 2008]. According to our measurements

(see Section 2.4), the gamut size of the input device is smaller. Especially the input gamut is smaller
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regarding highly saturated colours. Aiming to achieve the highest fidelity of perceived colour repro-

duction, we directly mapped perceived colour attributes (input gamut) into perceived output colour

attributes (output gamut) with a direct 1:1 gamut mapping, similar to relative colorimetric intent

(see Section 2.4 for more details). Plausible aspects in user preference (e.g., gamut mapping study)

are not handled in this thesis. In summary, this thesis focuses on accuracy in both physical acqui-

sition (device characterisation) and perceptual prediction (colour appearance modelling) in HDR

colour reproduction. Finally, this thesis provides a complete colour reproduction system for HDR

imaging as an application at the end. Possible applications for this system may be as a high-fidelity

reproduction pipeline in an HDR broadcasting system (from HDR input to home displays) or as a

measuring device for physical radiance and its corresponding perceptual response.

1.3 Contributions

In the context of this thesis, the following contributions have been made.

• Device characterisation for HDR camera systems. A novel characterisation method is intro-

duced in Chapter 3. A novel colour reference target was built, specifically designed for HDR

imaging. The reference target has a larger gamut and higher dynamic range than common

camera calibration targets. It enables highly accurate calibration of an HDR camera system.

The proposed method yields physically-meaningful HDR radiance maps to a high accuracy

from digital cameras. See Chapter 3 for more details on HDR characterisation.

• Colour constancy algorithm. A novel colour constancy algorithm is proposed to reproduce

colour constant hues on output media. This technique produces the estimated white point of

the scene illumination that is used for white balancing of the calibrated HDR radiance map

and can be used to estimate the white point as input to our CAM. See Chapter 3 for more

details on white balancing.

• Colour appearance data under high luminance levels. A novel high-luminance display de-

vice was built to yield a controllable high-luminance viewing environment, where a series of

psychophysical experiments were conducted to produce colour appearance data under high

luminance levels (up to 16 860 cd/m2). This data set provides novel measurements of human

colour perception in the full working range of the human visual system (five orders of mag-

nitude). See Chapter 4 for more details on the experiments and analysis of the data set. The

appearance data set can be found in Appendix A.

• Colour appearance model for high luminance levels. A novel colour appearance model

was developed from our experimental data set (see Chapter 4 for the experiments), which

enables us to model the human visual system under high luminance levels. The model covers a

larger range of luminance than existing colour appearance models, and it is directly applicable

to HDR imaging. Owing to the proposed colour appearance model, no extra tone-mapping
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algorithm is required to complete colour reproduction in HDR imaging. Chapter 5 describes

the development of our colour appearance model.

• Cross-media colour reproduction system for HDR imaging. A complete colour reproduc-

tion pipeline is introduced in Chapter 6. This system is built using the HDR characterisation

(in Chapter 3) and our colour appearance model (in Chapter 5). It enables reproduction of

human observations of a real-world scene onto an output display device. Chapter 6 describes

the organisation of the novel elements for colour reproduction in HDR imaging. Results indi-

cates that the proposed colour reproduction system produces high fidelity on output media.

Most of these contributions have been presented in the following publications:

1. Min H. Kim, Tim Weyrich, and Jan Kautz. 2009. Modeling Human Color Perception un-

der Extended Luminance Levels. ACM Transactions on Graphics (Proc. SIGGRAPH 2009),

28(3):27:1-9.

2. Min H. Kim and Jan Kautz. 2008. Characterization for High Dynamic Range Imaging. Com-

puter Graphics Forum (Proc. EUROGRAPHICS 2008), 27(2):691-697.

3. Min H. Kim and Jan Kautz. 2009. Consistent Scene Illumination using a Chromatic Flash.

In Proc. Eurographics Workshop on Computational Aesthetics in Graphics, Visualization, and

Imaging (CAe 2009), pages 83-89, British Columbia. Eurographics Association.

4. Min H. Kim and Jan Kautz. 2008. Consistent Tone Reproduction. In Proc. IASTED Conference

on Computer Graphics and Imaging (CGIM 2008), pages 152-159, Innsbruck. IASTED/ACTA

Press.

5. Min H. Kim and Lindsay W. MacDonald. 2006. Rendering High Dynamic Range Images. In

Proc. EVA 2006 London Conference, EVA Conferences International, pages 22.1–11, Middlesex.

EVA Conference International (ECI).

Other publications during this doctorate:

6. Tobias Ritschel, Thorsten Grosch, Min H. Kim, Hans-Peter Seidel, Carsten Dachsbacher, and

Jan Kautz. 2008. Imperfect Shadow Maps for Efficient Computation of Indirect Illumination.

ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2008), 27(5):129:1-8.

7. Insu Yu, Andrew Cox, Min H. Kim, Tobias Ritschel, Thorsten Grosch, Carsten Dachsbacher,

and Jan Kautz. 2009. Perceptual Influence of Approximate Visibility in Indirect Illumina-

tion. ACM Transactions on Applied Perception (presented at Symposium on Applied Perception in

Graphics and Visualization, APGV 2009), 6(4):24:1-14.
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1.4 Thesis Outline

Chapter 2 presents the fundamentals of colour reproduction, device characterisation, colour ap-

pearance modelling, and HDR imaging in general. It also provides an overview of the state of the

art in colour appearance modelling and HDR imaging. In Chapter 3, we present a novel reference

target designed for HDR camera systems and a novel technique to build physically-meaningful HDR

radiance maps with significant accuracy, called HDR characterisation. We also introduce an efficient

and accurate method to estimate the scene illumination for white balancing. Chapter 4 describes

the high-luminance colour experiments, conducted with a high-luminance display device that was

specifically designed and build for producing high-luminance colour stimuli. A novel colour appear-

ance model for high luminance levels is presented in Chapter 5. It is derived from the acquired

experimental data in Chapter 4. Chapter 6 describes an HDR colour reproduction pipeline using our

novel fundamentals. Chapter 7 summaries this thesis and discusses potential directions for future

work, and Chapter 8 concludes this thesis. Appendix A lists experimental data.
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Chapter 2

Background and Previous Work

This chapter introduces the background to this thesis and discusses related work. Section 2.1 intro-

duces colour reproduction. In Section 2.2, fundamentals of device characterisation are presented.

Section 2.3 describes human colour vision and the state of the art in modelling colour appearance.

The fundamentals of gamut mapping are presented in Section 2.4. Section 2.5 describes the related

work in high-dynamic-range imaging with respect to colour reproduction. Section 2.6 discusses this

chapter.

2.1 Colour Reproduction

Cross-media colour reproduction can be presented as a process which comprises three essential

elements: device characterisation, colour appearance modelling, and gamut mapping. A set of
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Figure 2.1: Five-stage colour reproduction system. Procedures for reproducing a source image on a

target medium can be described as a set of five different stages: (1) forward device characterisation,

e.g., a camera or a scanner, (2) forward colour appearance model, e.g., CIECAM02, (3) perceptual

gamut mapping, (4) inverse colour appearance model, and (5) inverse device characterisation. Adapted

from [MacDonald, 1993; Morovic, 1985].
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these elements can be interpreted as a five-stage transform [MacDonald, 1993] from the point of

view of reproducing a source image on a target medium (see Figure 2.1).

Initially, the original image is specific on the source medium. For instance, the RGB 8-bit signals

of a camera. At the target device the image is also shown in a medium-dependent way. In order

to match the colour appearance on the two different media, it important to describe the different

media in some medium-independent way. Device characterisation describes colour reproduction de-

vices, e.g., a camera, a scanner, and a printer, by relating their device-dependent colour specification

to device-independent coordinates, e.g., physically-meaningful tristimulus values such as CIEXYZ.

However, this is not sufficient for colour reproduction as a given physical stimuli can be perceived

differently depending on its viewing conditions. Perceptual attributes, e.g., the lightness, chroma,

and hue of a physical colour stimulus, need to be communicated instead of physical stimuli val-

ues. Hence, a colour appearance model links the description of the physical stimuli to the perceptual

appearance attributes, considering a given viewing environment. Technically, these two elements,

device characterisation and colour appearance modelling, are sufficient for colour image repro-

duction unless the size of the colour gamuts of input/output media is different [Morovic, 2008].

However, if there is a considerable difference between the colour gamuts, it is necessary to map the

input colour gamut into the output in an intelligent way, so-called gamut mapping.

2.2 Characterisation

Colours on imaging devices are specific to their media. Device characterisation converts the device-

dependent colour specification to device-independent coordinates. It bridges the meaningless imag-

ing device signals to physically-meaningful values. The following sections present the physical back-

ground and technical details of device characterisation.

2.2.1 Measuring Optical Radiation

Imaging devices like digital or film cameras sense a certain range of optical radiation to yield im-

ages. Radiometry is the measurement of the optical radiation, which is an electromagnetic radiation

within the frequency range from 3⇥1011 to 3⇥1016Hz [CIE, 1983]. In contrast, photometry is the

measurement of light, which is defined as electromagnetic radiation detectable by the human eye

within the wavelength range from 380nm to 780nm. It is defined as the CIE V (λ) function [CIE,

1986]. Therefore, radiometric units include infrared, visible, and ultraviolet wavelengths without

specific consideration of the human visual system, and luminous units account for the perceptual

aspect of the radiation on the human eye.

There are various ways to quantify the optical radiation in physics. The quantification units are

described here. Suppose there is a tungsten light, which emits a beam of light on subjects in a room.

The beam contains a certain amount of light. When it is near the lamp, it occupies a small area;

when it is further away, it occupies a larger area (like a spot light). However, the amount of light

in the beam is the same. Its beam looks like a circular cone (see Figure 2.2). The total amount of

light visible in the beam is called luminous flux [unit: lumen] F . It is a summation of the products of
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the power per unit wavelength interval P(λ), the spectral luminous efficiency function V (λ) [CIE,

1986], and the width of each wavelength band ∆λ. To obtain a physically-meaningful scale, it is

scaled by a constant relating units of flux to units of power (683 lumens per watt) Km:

F = Km

X

λ

P(λ)V (λ)∆λ . (2.1)

The only difference between calculating radiometric units and calculating photometric units is to

exclude the CIE V (λ) function of luminance. The calculation of radiant flux excludes the V (λ)

function in Equation (2.1) and uses the watt unit instead.

Luminous flux measures the visible light in passage from one place to another. Illuminance is

the amount of luminous flux falling on a unit area of a surface. Its unit is lux, which means one lumen

falls on an area of one square metre. For irradiance, the unit is w/m2.

There are two interesting laws related to illumination. Illumination E is inversely proportional

to the square of the distance between the light and the surface d, E1
E2
=

d2
2

d2
1

, called Inverse Square

Law of Illumination. The illumination E on an inclined surface E at distance d is proportional to

the cosine of the angle ✓ of incident light and the surface normal, E = I cos✓
d2 , where I is luminous

intensity, called the Lambertian Cosine Law of Illumination (see Figure 2.2).

On the light emitting surface, the amount of light leaving a light source can be measured. It is

called the luminous intensity, and is measured in candela. One candela occurs when a source radiates

one lumen into a solid angle of one steradian (sr). The unit for radiant intensity is w/sr.

Luminance describes a measure of the light leaving a surface, equal to the luminous intensity

per unit area. The unit of luminance is cd/m2; the unit for radiance is w/(m2 ·sr). In particular, the

iterative travel of radiance L at a certain solid angle (a steradian w is an area A per squared radius r:

w= A/r2) !o can be modelled mathematically like Equation (2.2), so-called the rendering equation

[Kajiya, 1986]. It is a summation of emitted radiance Le(p,!o) at a point p and the integral of

reflected light in hemisphere ⌦:

L(p,!o) = Le(p,!o)+

Z

⌦
f (p,!i ,!o)L(p

0,−!i)cos✓i d!i , (2.2)

d1

d2

E1

E2



Luminous flux

Figure 2.2: Schematic diagram of illumination laws. E1 surface illuminated by a near light source; E2

surface illuminated by a more distance of light source.
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where f (p,!i ,!o) is the reflectance property (a scalar function from zero to one) at point p in the

incoming direction !i and outgoing direction !o. This is the bi-directional reflectance distribution

function (BRDF). L(p0,−!i) is the incoming radiance from direction (−!i) in one dimensional

angle ✓ from the surface p normal.

In practice, a perfect diffusion assumption is often used for mathematical convenience, called

a Lambertian surface. Theoretically, a Lambertian surface provides uniform diffusion of the incident

radiation so that its luminance is the same in all directions from which it can be measured. For

instance, if the Lambertian surface is illuminated uniformly with an illuminance of 3.1416 (⇡) lux,

then the measure of its luminance on that surface will be 1.0 cd/m2 in 100% reflectance.

2.2.2 Colorimetry

Colorimetry is the measurement of human colour perception, concerned with reducing spectra to the

physical correlates of colour perception. To perform colorimetry, we need three essential elements: a

light source (illuminant), an object (with standard measuring geometry), and a standard observer.

In 1931, Commission Internationale de l’Eclairage (CIE) conducted psychophysical experiments,

the CIE 1931 standard colorimetric observation, for quantifying trichromatic colour perception of

humans to yield colour matching functions (CMF). In the experiment, two colours are shown to

normal colour vision observers who are asked to adjust one of the stimuli colours to match the

appearance of the other colour. They used red, green, and blue lights that produced a metameric

match. The transform has since been updated by Stiles and Burch [1959] and Vos [1978]. These

functions became the official standard for the transform from visible spectrum to trichromatic colour

coordinates, the so-called CIE tristimulus values, CIEXYZ.

However, the physiological long-/middle-/short-wave (LMS) cone responses were discovered

to be different from these psychophysical colour matching functions [Estévez, 1979; Hunt and

Pointer, 1985]. A transform for cone response was suggested by Estévez [1979], which is broadly
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Figure 2.3: CIE 1931 colour matching functions vs. physiological cone spectral sensitivity curves. Solid

R/G/B coloured lines present CIE 1931 colour matching functions (version: Vos [1978] modification),

broken R/G/B coloured lines show the physiological cone responses originated by Estévez [1979]. In

particular, the red colour response (L-cone) appears significantly different from CIE x(λ) function.
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used as a fundamental transform for computational cone responses (see Figure 2.3 for comparison

between the CIEXYZ and LMS cone responses). See Section 2.3.4 for more details on colour spaces.

Radiation that raises the colour sensation is measurable by a photo-detector. Such devices

comprise of a diffraction grating and light-detecting diodes; for instance, a colorimeter, spectrora-

diometer, or spectrophotometer. The measured energy on each band of wavelengths is recorded as a

spectrum. The spectrum can be converted to tristimulus values (CIEXYZ). Depending on the type of

measuring device, there are two different types of tristimulus values. Spectroradiometers normally

yield tristimulus values X Y Z by the summation of products of spectral radiance distributions Le,λ

[unit: W/(sr·m2·nm)] and CIE colour matching functions x(λ), y(λ), and z(λ), scaled by maxi-

mum photographic luminous efficacy, Km, 683lm/W, where the Y value corresponds to luminance

Lv (unit: cd/m2) [Ohta and Robertson, 2005]:

X = Km

X

λ

Le,λx(λ)∆λ ,

Y = Km

X

λ

Le,λ y(λ)∆λ = Lv , (2.3)

Z = Km

X

λ

Le,λz(λ)∆λ .

In contrast, spectrophotometers yield the CIEXYZ by the normalised (usually Y = 100) summation

of products of reference viewing illumination P(λ) (CIE standard illumination, D50), which is the

spectral power distribution normalised to 100 at 560nm wavelength, surface reflectance basis S(λ)

[unit: W/(sr·m2·nm)], and CIE CMFs [CIE, 1986] [Hunt, 1998]. As it turns out, spectrophotometers

yield normalised D50 illumination-adapted radiance measurements. However, both are confusingly

called CIEXYZ values even though they are not identical:

X = k
X

λ

P(λ)S(λ)x(λ)∆λ ,

Y = k
X

λ

P(λ)S(λ)y(λ)∆λ , (2.4)

Z = k
X

λ

P(λ)S(λ)z(λ)∆λ ,

where k=
100

P

λ

P(λ)y(λ)∆λ
.

The International Electrotechnical Commission (IEC) standardises a common colour transform from

sRGB primaries to CIEXYZ values [IEC, 2003], which returns the radiometric tristimulus values

without including the reference illumination adaptation. In contrast, most present colour trans-

form matrices in colour science were derived from the measurements of a spectrophotometer, e.g.,

CIECAT02, Bradford chromatic transform, or Hunt-Pointer-Estévez (HPE) transform, as most psy-

chophysical experiments were conducted with reflective materials. To this end, Nielsen and Stokes

[1998] proposed a D50-adapted transform of sRGB primaries. The transform bakes the D50 il-

luminant adaptation in the original sRGB transform [IEC, 2003] through the Bradford chromatic

adaptation [Lam, 1985]. This transform is used as an International Color Consortium (ICC) profile
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Forward transform

R G B

X 0.4124 0.3576 0.1805

Y 0.2126 0.7152 0.0722

Z 0.0193 0.1192 0.9505

Inverse transform

X Y Z

R 3.2406 -1.5372 -0.4986

G -0.9689 1.8758 0.0415

B 0.0557 -0.2040 1.0570

Table 2.1: Transform from sRGB into CIEXYZ [IEC, 2003].

Forward transform

R G B

X 0.4361 0.3851 0.1431

Y 0.2225 0.7169 0.0606

Z 0.0139 0.0971 0.7141

Inverse transform

X Y Z

R 3.1336 -1.6168 -0.4907

G -0.9787 1.9161 0.0335

B 0.0721 -0.2291 1.4054

Table 2.2: Transform from sRGB into D50-adapted CIEXYZ [Nielsen and Stokes, 1998].

colour space (PCS) [ICC, 2004] (see Table 2.1 and 2.2 for both transform details). In our colour

reproduction system, the D50-adapted transform is used for transforming sRGB signals to CIEXYZ

values. See Chapter 6 for more details of our colour reproduction system.

When the photo-detector measures the surface reflectance (colour), the measurements can

be changed due to the geometric positions of the light source, the photo-detector and the surface

object. The CIE defined four illumination and viewing geometries for reflectance (transmittance)

measurements [CIE, 1986]: 45/normal (45/0), normal/45 (0/45), diffuse/normal (d/0), and nor-

mal/diffuse (0/d) (see Figure 2.4). In the 45/normal geometry, the sample is illuminated with an

incident light at an angle of 45◦ from the normal, and the photo-detector is located along the nor-

mal. The normal/45 geometry is the reverse order of the 45/normal geometry. Common hand-held

spectrophotometers, e.g., GretagMacbeth Spectrolino and EyeOne, use the 45/normal geometry. In

Detector

45/0

Light
source

Detector

D/0

Light
source

Detector

0/D

Light source

Detector

0/45

Light source

Figure 2.4: CIE-recommended illuminating and viewing geometries. Adapted from [Battle, 1997].
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the diffuse/normal geometry, the colour object is illuminated from all angles using an integrating

sphere, of which the inner surface is painted with white material, and measured at the angle near

the normal to the surface (generally 8◦ from the normal to avoid specular highlights). This geometry

provides an option for measuring specular highlights (included or excluded). The normal/diffuse

geometry is the reverse order of the diffuse/normal geometry. Generally, high-end spectrophotome-

ters use normal/diffuse geometry, e.g., the Datacolor Spectraflash.

2.2.3 Camera Optics for Capturing Radiance

Electromagnetic radiation can be captured physically by an optical mechanism. The simplest forma-

tion of an optical image is an image on a plane mirror. As further evolution of the image formation

device, Greeks such as Aristotle and Euclid discovered the optical principle of the pinhole camera in

the 4th century BC. This is a precursor to the camera obscura: an optical device used in drawing that

lead to the invention of photography. In this camera system, the bundles of rays from points on the

subject pass through a pinhole and diverge to form an image on a photoplane surface. The pinhole

image is inverted, reversed, smaller and lacks sharpness. In modern camera systems, the pinhole

is replaced with a series of negative and positive spherical lenses in order to improve the image

formation in terms of geometric/radiometric distortion, sharpness, vignetting, and brightness.

A lens is usually fitted with aperture, which controls the transmittance of light, calibrated in

units of relative aperture. This is represented by a number N , which is defined as the equivalent focal

length f of the lens divided by the diameter d of the entrance pupil: N = f /d, for example, a lens

with an entrance pupil size 25mm in diameter and a focal length of 50mm has a relative aperture

of 2 (=50/25). The numerical value of relative aperture is usually prefixed by the italic letter f

and an oblique stroke, e.g., f /2, which provides a reminder of its derivation. The denominator of

the expression used is usually referred to as the f-number of the lens, and the relative aperture of a

lens is commonly referred to simply as its aperture or even as the f-stop. If there are two different

aperture and shutter speed settings, they satisfy the ratio of shutter times to the ratio of squared

aperture sizes: t1
t2
=

N2
1

N2
2
[Ray, 2000b].

To simplify exposure calculations, f -numbers are usually selected from a standard series of

numbers. As the amount of light passed through a lens is inversely proportional to the square of the

f -number, the numbers in the series increase by a factor of
p

2. The standard series of f -number

is f /1.0, 1.4, 2.0, 2.8, 4.0, 5.6, 8.0, 11, 16, 22, 32, 45, and 64. A change in relative aperture

corresponding to a change in exposure by a factor of 2 (larger or smaller) is referred to as a change

of one stop.

The change of aperture size influences not only exposure, but also sharpness. This is called the

depth of field. The depth of field Td is proportional to the squared of focused distance u of an object

and relative aperture N . Td is also proportional to the diameter of the circle of confusion of the lens

C , but is inversely proportional to the square of the focal length f of the lens: Td =
2u2NC

f 2 .

The amount of incident radiation can be controlled by a shutter by opening and closing its

shield at a user’s command and exposing the sensing material to light for a predetermined time. It



2.2. Characterisation 14

can be decided by the user or by an automatic exposure-metering system. On older shutters before

1950s, the series of shutter speeds was 1, 1/2, 1/5, 1/10, 1/25, 1/50, 1/100, 1/250, and 1/500

second. Modern shutters provide 1, 1/2, 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, and 1/500

second in order to provide a progression of exposure increases similar to the standard series of

lens aperture numbers (by a factor of 2) for easy calculation of the exposure. The latter shutter

system permits a mechanical interlock between the aperture and shutter speed controls to keep the

two in a reciprocal relationship with reference to exposure values [Ray, 2000a]. However, modern

shutters introduce rounding errors with respect to a factor of 2, e.g., 1/15 and 1/16. Debevec and

Malik [1997] tested their Canon EOS Elan camera by audio recording of the camera shutters. Their

measurements verified that the actual exposure times varied by powers of two, e.g., 1, 1/2, 1/4,

1/8, 1/16, 1/32, 1/64, 1/128, 1/256, and 1/512. We used these actual shutter speeds for the

exposure time calculation.

When the shutter system opens, the light from a subject falls on to the corresponding area of

the photo-sensing material inside a camera. The effect produced on the material, exposure H, is

proportional to the product of the illuminance E and the exposure time t: H = Et. The unit for

exposure is lux seconds [unit: l x · s] [Attridge, 2000]. The decision of how much to exposure is

made not using radiance, but luminance that excludes the ultraviolet and infrared regions of the

electromagnetic spectrum.

The luminance L of a small off-the-axis area of the subject is imaged in the focal plane of the

camera as illuminance E. The amount of illuminance E on the sensor site that comes from the

subject’s luminance L increases with a lens of higher transmittance T , but decreases with squared

f -number of aperture N :

E =
T⇡cos4✓

4N2 L , (2.5)

where illumination E reduces according to the distance from the optical axis of the lens in propor-

tional to cos4✓ , called the vignetting effect (✓ is an angle from the optical axis).

In addition, the equivalent series of the combinations of shutter times and apertures can be

defined as a absolute figure, called exposure value (EV) [Ray, 2000a]: log2

⇣

N2

t

⌘

. Assuming a film

speed of ISO 100, the overall luminance level can be determined as a proportion of 2EV−3. For

instance, if an EV measurement is 5, the scene luminance is approximately 4 cd/m2.

2.2.4 Sensing Radiance

Once the optical radiation has travelled through the optical mechanism, the amount of radiation

can be detected by certain materials to accomplish image formation. Early image-sensing technol-

ogy started with Daguerreotype (the first photography, introduced in 1839) in which silver halide is

coated on the surface of a mirror as photodetectors [Walls and Attridge, 1977]. Once an image is

exposed on the silver halide, the latent image is deposited by iodine vapour. In recent film photog-

raphy, the mirror is replaced with light-sensitive emulsion, which comprises transparent celluloid or

acetate base, coated with an emulsion, containing the silver halide. The developing method of the

latent image is also improved with bromine and chlorine to enhance the spectral sensitivity of films.
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The film-based image-sensing method has been replaced by solid-state-based devices over many

years for efficiency and accuracy. Charge-coupled device (CCD) refers to a semiconductor architec-

ture in which the electronic charge is transferred to its storage areas. The CCD architecture has

three basic functions: charge collection, charge transfer, and the conversion of charge into measur-

able voltage [Janesick, 2001]. Recently, complementary-metal-oxide semiconductor (CMOS) has

become more popular than CCD sensors in solid-state cameras as it provides more efficient energy

consumption. In general, CCDs are regarded as passive pixel sensors and CMOSs are regarded as

active pixel sensors, since each pixel on the CMOS includes its own amplifier to yield amplified

charge voltage per pixel [Holst, 1998].

Note that solid-state-based sensors have a wider bandwidth of spectral sensitivity than the

human visual system (see Figure 2.5). In particular, the sensitivity of such sensors is spread more

toward infrared (IR) wavelengths (beyond red colour). In order to have a similar response to human

vision, the sensors need to be calibrated with an IR-blocking filter that cuts out the wavelengths

longer than 700-800nm [Gilblom and Yoo, 2004]. Once the incident light is filtered through the

IR blocking filter, individual pixels are filtered with either red, green, or blue filters arranged in a

mosaic pattern. These colour filters mimic the spectral responsivity of the human visual system [see

Figure 2.8(a) for the spectral sensitivity of a digital camera and Figure 2.3 for that of the human

visual system].

The amplified charge voltage is transported to an analogue-to-digital converter (ADC), which

converts voltage into measurable voltage, i.e., an electronic signal. For consumer cameras, an 8-

bit ADC is used; for professional or scientific photographic cameras, a 12- or 14-bit ADC is used.

Its linearity is specified by differential nonlinearity (DNL) and integral nonlinearity (INL). In theory,

the voltage of charge in a detector should increase linearly in proportion to the illuminance on

the surface of each pixel, but its linearity often requires additional calibration inside the solid state

device [Inglis and Luther, 1996]. In addition, recent digital single-lens reflex (DSLR) cameras

provide an alternative output in addition to ordinary 8- or 16-bit red, green, and blue (RGB) outputs.
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Figure 2.5: Quantum efficiency of a solid-state-based sensor. The raw spectral sensitivity of solid-

state-based sensors is much wider (between 300 and 1100nm) than that of the human visual system

(380–780nm). Infrared-blocking filters are necessary to make the response similar to the human eye.

Adapted from [Gilblom and Yoo, 2004].
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It is often called RAW image format, which directly stores the ADC sensor signals in the Bayer-pattern

as one mosaic colour channel of red, green, blue, and green (RGBG). It excludes the post-image

processing, e.g., white balancing, gamma correction, tone mapping, or post noise reduction process,

merely including hardware-level noise reduction (pattern noise), scaling constants for white point in

the captured scene, and meta data of the camera settings [Coffin, 2009]. The method in Chapter 3

utilises these RAW files to generate high-dynamic-range images and characterises them to achieve

image measurements of radiance on an absolute scale.

The dynamic range of solid-state sensors is often limited by two main factors: overflow drain in

the highest saturation level of illuminance, called blooming effect; and noise floor in the lowest sat-

uration level of illuminance (see Figure 2.6). First, when an electron-detector (well) overflows, the

charge spills over to adjacent pixels in the same column resulting in an undesirable overload, called

blooming. In order to overcome the blooming effect, usually anti-bloom drains or overflow drains

are installed in the imaging sensor. The drains are attached to every pixel, where any photoelectron

is swept into the drain and instantly removed. In an ideal imaging system, the output increases

linearly in proportion to the incident light up to the anti-bloom drain limit. However, in real arrays,

a knee is created because of imperfect drain operation [Janesick, 2001] (see Figure 2.6).

Second, the dark saturation point of the image is limited by sensor noise, which falls into five

main categories [Holst, 1998]: Shot noise is due to the discrete nature of electrons. It occurs when

the photoelectrons are created while the dark current electrons are present. Cooling the array can

reduce the dark current (relatively small electric current that flows through the solid state even

without exposed to light) to a negligible value and thereby reduce the shot noise to a negligible

level; Reset noise is associated with resetting the sense node capacitor. It occurs due to thermal

noise (a signal generated by the thermal agitation of the charge carriers in the conductor) generated

by the resistance; Amplifier noise comprises two components: 1/f noise (a signal with a frequency

spectrum such that the spectral power density is proportional to the reciprocal of the frequency)

and white noise (random signals independent of the spectral power density). It occurs in on-chip

amplifiers as well as off-chip amplifiers; quantisation noise is due to the ADC discretisation of the

output level; Pattern noise refers to pixel-to-pixel variation that occurs (when the array is even in the

dark) due to the dark current differences. It is a signal-independent noise, which occurs in CMOS

sensors. The noise level is often evaluated as root-mean-squared (RMS) noise on the capture of a

uniform surface:

RMS=

v

u

u

t

1

MN

M−1
X

x=0

N−1
X

y=0

⇥

f (x , y)− g(x , y)
⇤2 , (2.6)

where M and N are horizontal and vertical image resolutions; f is each pixel level, and g contains

the mean of the entire pixel levels.

The dynamic range can be described as the difference between the maximum and minimum

intensities (or densities) of imaging signal (or colorant), where the intensity (or density) is often

calculated by taking the 10-based logarithm of the ratio between the reference maximum luminance
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measure Imax and the minimum luminance measure Imin: log10

⇣

Imax
Imin

⌘

. In electronic imaging, the

dynamic range often describes the number of electrons of full capacity of the well Nsignal , which

is limited by the noise floor Nnoise [Holst, 1998]. The dynamic range that considers the noise

floor is presented by the signal-to-noise ratio (SNR) (dynamic range multiplied by 20, unit: dB):

20log10

⇣

Nsignal

Nnoise

⌘

, where Nnoise is usually calculated as RMS noise.

2.2.5 Device Characterisation

Once we measure the optical radiation of a reference target and simultaneously capture it as an

image with a sensing device, it is possible to derive a mathematical model to describe the colour

specification of the imaging device in physically-meaningful device-independent coordinates. The

device signals or output colours in imaging devices vary due to their manufacturer settings or hard-

ware design. They can also vary even with the same specification of identical models due to their

manufacturing process. Device characterisation overcomes the variation of imaging devices to build

a mathematical bridge between device signals and physical coordinates so that we can describe the

device-dependent signals as device-independent signals. A colour space, e.g., CIEXYZ or CIELAB,

can be used device-independent signals. To this end, we are able to utilise imaging devices to mea-

sure some physical property or to produce specific target colours on the output devices. Device

characterisation often requires two procedures [Johnson, 2002]:

• Calibration: the setting up of a device or process so that the device gives repeatable data.

• Characterisation: the relationship between device colour space and the device-independent

colour space, e.g., CIE tristimulus values.

Once a device is calibrated in repeatable conditions, a mathematical model can be derived to yield

physically-meaningful coordinates. The characterisation of a target device then comprises two ele-

ments: estimating a tone-reproduction curve for each colour channel, the so-called opto-electronic

transfer function (OETF), and deriving a colour transform between the device-dependent signals and
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Figure 2.6: Average responsivity of solid-state imaging. Its average responsivity is the slope of the

output-input transformation. The maximum input or the saturation equivalent exposure (SEE) is the

input that fills the charge wells. SEE is used to define the dynamic range. Dark current limits the

available signal strength. Cooling can reduce the dark current to a negligible level. Adapted from

[Holst, 1998].
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Figure 2.7: Measured OETFs of a digital camera and an LCD display. Plot (a) shows the measured

OETF of RGB output of a Nikon D100 camera, where the horizontal axis presents normalised incident

luminance and the vertical axis shows normalised camera outputs. Plot (b) shows the measured OETF

of an Apple Cinema HD Display (LCD panel), where the horizontal axis indicates normalised input

display signals and the vertical axis presents the normalised corresponding measurements of luminance

levels.

the device-independent coordinates.

Opto-Electronic Transfer Function OETF describes a non-linear tone-reproduction function for

each colour channel of an imaging device. For instance, the 709 phosphor in a cathode-ray tube

(CRT) display yields non-linear luminance responses according to its voltage input [Inglis and

Luther, 1996]. Its responses are raised to the power of approximately 2.2, which is similar to

the inverted function of the human cone responses (raises to the power of approximately 0.45, see

Chapter 4 for the measured human response). To this end, the non-linear response of CRT monitors

cancels out the non-linear response of human perception. The OETF for the 709 phosphor became

an international standard for tone reproduction of the sRGB colour space [IEC, 2003]. Figure 2.7

shows the measured OETFs of a DSLR camera and a liquid-crystal display (LCD) monitor. One is

associated with the other as an inverse function with minor differences. Even though an LCD panel

has a linear response to input voltage [Kwak and MacDonald, 2001], the complete product of the

LCD display replicates the OETFs of the CRT monitor to maintain backward compatibility with the

sRGB colour system.

Display device radiance level measurements (corresponding to its input signals) allow us to

derive OETFs for the colour primaries of the device. For instance, if the rough estimate of the

tone-reproduction curve appears similar to the power function, we can model the OETF as a power

function [Berns et al., 1993], called a gain-offset-gamma (GOG) model. It models the tone repro-

duction of each channel as a power function with a conditional clamp:

C =

8

<

:

î

kgain ·d+ko f f set

óγ
,
î

kgain ·d+ko f f set

ó

> 0

0,
î

kgain ·d+ko f f set

ó

 0
, (2.7)
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where the summation of kgain and ko f f set is one; d is a normalised display signal for each channel;

kgain is a scaling constant; ko f f set is an offset value; the radiance raises to the exponent of γ. C is

the radiance level of red (R), green (G), and blue (B) primaries respectively.

To provide a linear relationship in the complete camera-display system, an inverse gamma

power function is used in digital cameras as an image processing procedure, so-called gamma cor-

rection. This is an essential step to transform the trichromatic radiance values to sRGB display

signals (camera output). Note that gamma correction does not exist in HDR imaging camera output

as this is normally conducted in the tone-reproduction stage of HDR imaging. When the radiance

level C of each primary is normalised to 1.0, the normalised camera output will be:

d =

8

<

:

1.055Cγ−0.055, C > 0.00304

12.92C , C  0.00304
, (2.8)

where γ value is 1/2.4 (0.42) which compensates for the 2.2 gamma reproduction in the sRGB

system (with linear ramp for dark colours) [IEC, 2003].

OETFs of output devices should be invertible for actual applications. See Chapter 6 for more

details on the practical application of display characterisation. In contrast, it is not necessary for

digital camera OETFs to be invertible as only a forward transform (from the device signals to the

device-independent signals) is required (see Chapter 6 for more details). Hence, high-ordered poly-

nomials are often used for better performance instead of the simple power function [Pointer et al.,

2001; MacDonald and Ji, 2002; ISO, 2006].

Colour Transform Modelling characteristics of non-linear tone reproduction for each colour chan-

nel yields linearised device signals, which correspond to physical measurements of device-dependent

colours. It enables us to derive a linear transform between device signals and physical measure-

ments. The use of colour transforms is based on a theory, called Grassmann’s Additivity Law [Hunt,

1998], which describes that any colour can be matched by certain amounts of multiple primaries.

For instance, if we have three device primaries and three-dimensional colour coordinates, a 3⇥3

linear transform is sufficient to map device colours to colour coordinates such that they are linearly

associated.

Suppose we have a digital camera which captures a measured colour target. The trichromatic

response value [red (R), green (G), and blue(B)] of a specific pixel on the sensor is given as the

sum of the product of the spectral power distribution (irradiance) of the light source P(λ), the

surface reflectance (or transmittance) of the imaged object S(λ), and the spectral responsivities of

the colour filters Dr/g/b(λ). Assuming that incident light is reflected from object surfaces:

R=
P

λ

P(λ)S(λ)Dr(λ)∆λ ,

G =
P

λ

P(λ)S(λ)Dg(λ)∆λ ,

B=
P

λ

P(λ)S(λ)Db(λ)∆λ .

(2.9)
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The summation is taken over a suitable wavelength range in the visible part of the spectrum from

380nm to 780nm for instance [ISO, 2006]. The calculation of these response values is similar to

the computation of device-independent tristimulus values, such CIEXYZ:

X =
P

λ

P(λ)S(λ)x(λ)∆λ ,

Y =
P

λ

P(λ)S(λ)y(λ)∆λ ,

Z =
P

λ

P(λ)S(λ)z(λ)∆λ ,

(2.10)

where x(λ), y(λ) and z(λ) are the CIE color matching functions (CMF) [CIE, 1986]. The only

difference between Equations (2.9) and (2.10) is the use of different weighting functions Dr/g/b

and x , y ,z.

Various camera characterisation techniques have been proposed to find a mapping between

these colour spaces. They can be categorised into two main classes: models based on targets

with known reflectances [Pointer et al., 2001; MacDonald and Ji, 2002; Johnson, 2002; ISO,

2006] and models based on the measurement of spectral responsivity using a monochromatic light

source [Martínez-Verdú et al., 2000; MacDonald and Ji, 2002; Martínez-Verdú et al., 2003; ISO,

2006; Normand et al., 2007].

The reflectance-based techniques use a colour target, such as the GretagMacbeth ColorChecker,

where the tristimulus values of each colour patch are measured first or already known (e.g., in

CIEXYZ). A picture of the colour target is then taken and a direct mapping between the image’s

RGB-values and the measured XYZ values is derived via linear regression (or polynomial regression

in case of non-linearised images). While these techniques are very simple, they are only valid for the

current illumination condition [ISO, 2006], as P(λ)s in Equation (2.9) and (2.10) are not the same
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Figure 2.8: Spectral responsivity of a digital camera and an LCD display. Plot (a) shows the measured

spectral sensitivities of the RGB filters respectively on the single wavelength lights (Nikon D70). The

responsivity appears to be similar to the human colour matching functions in wavelengths between 380

and 730nm. Plot (b) presents the measured spectral characteristics of the RGB primaries respectively.

The bandwidth of the trichromatic primaries is relatively narrower in the LCD display (Apple Cinema

HD Display), compared to the width of the camera filters, as the florescent lamp or LED diode is used as

a back-light source instead of broadband width light sources (e.g., a Xenon lamp).
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with these methods. P(λ) in Equation (2.9) is the spectrum of the light source at a scene; P(λ) in

Equation (2.10) is usually CIE D50 illuminant in colorimetry and ICC profiles (see Section 2.2.2). As

soon as the lighting changes, a new mapping is required. Therefore, this characterisation method is

very limited in practical applications. Nonetheless, it is universally used for ICC input profiles [ICC,

2004] and is part of the ISO standard [ISO, 2006]. Reflectance-based techniques have also been

extended to HDR imaging by assembling characterised LDR images into an HDR image by using

the ICC method [Göesele et al., 2001]. However, this extension shares the same assumption of

fixed geometric and spectral illumination characteristics, and also does not allow us to characterise

absolute luminance.

The monochromator-based techniques use a white integrating sphere of known reflectance and

a monochromatic light source of which wavelength can be adjusted. By illuminating the integrating

sphere with every single wavelength within the visible spectrum, the spectral responsivity Dr/g/b

can be measured directly, which allows derivation of a simple linear mapping to CIEXYZ. In this

case, P(λ) is the same for Equation (2.9) and (2.10). While this method is much more univer-

sal than reflectance-based techniques, monochromator-based techniques are very time-consuming,

each wavelength must be measured individually and a picture needs to be taken for every wave-

length. These techniques can, in theory, be used for camera characterisation in HDR imaging. How-

ever, only colour could be characterised and not luminance, as the employed illumination and target

only offers a low dynamic range. Figure 2.8(a) presents spectral characteristics of a digital camera,

obtained through the monochromator-based technique, compared to spectral characteristics of a

trichromatic LCD display [Figure 2.8(b)].

Inanici and Galvin [2004] and Krawczyk et al. [2005] proposed to rescale the measured lu-

minance values in HDR radiance maps by comparing them with measurements from a luminance

meter. However, they only take into account luminance scales without considering radiometric

measurements of colours.

2.2.6 White Balancing

The characterisation model of a digital camera transforms input device-dependent camera signals

into device-independent colour coordinates. However, in case an image is not intended for mea-

surement purposes but for display on an output monitor, we need to take the human visual system

(which adapts to a given illumination condition) into account. This is a classical issue and is tradi-

tionally called white balancing (for cameras) or colour constancy (for human vision) [d’Zmura and

Lennie, 1986] for digital cameras. These computational methods are distinct from human chro-

matic adaptation. Colour constancy methods pursue accurate estimation of scene illumination and

assume 100% adaptation to the given illumination, but chromatic adaptation in the human visual

system shows inconsistent adaptation to a given illumination; hence, a chromatic adaptation model

focuses on formulating these inconsistent trends in perceiving hue (see Section 2.3.4 for more de-

tails). Many colour constancy methods have been proposed and we can only mention the most

related methods; for a more complete overview, see [Hordley, 2006].
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In order to estimate the unknown scene illumination from camera signals only, assumptions

are usually made about aspects of real-world images. The grey-world method [Buchsbaum, 1980;

van de Weijer and Gevers, 2005] assumes that the average reflectance or colour derivative in a scene

is grey, whereas the maxRGB method [Land, 1977] assumes the respectively brightest channel levels

in an image correspond to the white point. Instead, prior information about the gamut distribution

can be acquired in a learning phase, which is used in the colour-by-correlation method, for instance

in [Finlayson et al., 2001]. Statistical prior probability of the training data set can be used to

improve the performance of the grey-world method [Barnard et al., 2002; Gijsenij and Gevers,

2007; Gehler et al., 2008]. This requires a large set of training data and long precomputation times.

Despite the large variety of available methods, no algorithm can be regarded as universal.

In practice, the grey-world and maxRGB approaches perform well on natural, real-world images

[Hordley, 2006; Gijsenij and Gevers, 2007]. We therefore propose an enhanced version of the grey-

world algorithm to estimate the scene’s correlated colour temperature, which is inspired by Barnard

et al. [2002]’s method. However, we derive a linear transform from real-world training images with

radiometric measurements instead of synthetic images, and we further apply a weighting scheme

that combines the maxRGB and grey-world methods. See Chapter 3 for more details.

2.3 Colour Appearance

Device characterisation describes colour reproduction devices by relating their device-dependent

colour specification to device-independent coordinates, e.g., physically-meaningful CIEXYZ. How-

ever, this is not sufficient for colour reproduction as given physical stimuli can be perceived differ-

ently due to their viewing conditions. Therefore, perceptual attributes, e.g., lightness, chroma, and

hue, of a physical colour stimulus need to be communicated rather than physical stimuli. Colour

spaces commonly try to ensure that equal scale intervals between stimuli represent approximately

equally perceived differences in the attributes considered. Colour appearance models additionally

try to model how the human visual system perceive colours under different viewing conditions, e.g.,

against different backgrounds. The following section presents the background and related work of

the human visual system, psychophysical methodology, and colour appearance models.

2.3.1 Human Colour Vision

Colour is caused by the spectral characteristics of reflected or emitted radiance, which is seemingly

easy to understand as a physical quantity. However, colour is really a perceptual quantity that occurs

in one’s mind, and not in the world. Therefore, the physical spectrum is commonly decomposed into

perceptual quantities using physiological and psychophysical measurements that try to quantify the

human visual system; e.g., the CIE 1931 standard colorimetric observation [CIE, 1986].

Müller’s zone theory of trichromatic vision [Müller, 1930] is commonly used as a basis for

deriving computational models of human vision. It describes how the combined effect of retina,

ganglion neurons, nerve fibers, and the visual cortex constitutes colour perception (see Figure 2.9).

The retina features cones and rods with different spectral sensitivity. Long (L), middle (M),
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and short (S) cones are stimulated by approximately red, green, and blue wavelengths respectively,

while the rods have achromatic sensitivity. The ratio of the numbers of the three cone types varies

significantly among humans [Carroll et al., 2002], but on average it can be estimated as 40:20:1

(L:M:S) [Vos and Walraven, 1971].

In the first stage of the visual system, the eye adapts to the observed brightness level. Two

adaptation mechanisms control the effective cone response. The pupil changes size and controls

the amount of light reaching the retina to a limited extent. In addition to physical adaptation, the

retina itself adapts neurologically. Based on measurements of cone responses of primates under

varying (flashed) incident retinal light levels I of up to 106 td (Troland units: luminance in cd/m2

⇥ pupil area in mm2), Valeton and van Norren [1983] found that the response satisfies the hyper-

bolic ratio equation of Naka and Rushton [1966], called Naka-Rushton equation [Equation (2.11)],

which originated from the Michaelis-Menten equation [V/Vm = I/(I+σ)] [Michaelis and Menten,

1913], effectively compressing the response. Normalising the cone response V by the maximum

physiological cone response Vm, they derive a general response function:

V

Vm
=

I n

I n+σn , (2.11)

where n was found to be 0.74 and σ was found to depend directly on the adaptation luminance

(varying from 3.5 to 6.3 log td), which shifts the response curve along the log-intensity axis, see

Figure 2.10.

In contrast, Boynton and Whitten [1970] assume σ to be constant and that all sensitivity

loss is caused by response compression and pigment bleaching, which is the basis of many colour

appearance models, such as Hunt94, CIECAM97s, and CIECAM02 [Hunt, 1994; CIE, 1998; Moroney

et al., 2002]; however, we will demonstrate that for accurate prediction of lightness, σ should be
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Figure 2.9: Schematic illustration of human colour vision based on the zone model [Müller, 1930].

Light enters through the pupil and stimulates cones and rods. The given stimulus is sensed by long (L)-

and middle (M)-wave cones in the fovea, and short (S)-wave cones and rods outside the fovea (a). The

strengths of the four responses are combined to yield achromatic brightness, and the ratio and strength

of the C1 (L−M) channel and the combined C2 (M −S) and C3 (S− L) channels yield the hue and

colourfulness sensations. The signals travel along the nerve fiber (crossed at the optical chiasm), are

merged into one image in the left and right lateral geniculate nucleus (LGNs), and cause the final visual

sensation at the visual cortex (c). Image (d) presents a corresponding anatomical chart of the head.
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allowed to vary. See Chapter 5 for more details on modelling the cone response.

Humans perceive object colours as constant under different illumination; this effect is called

colour constancy. It is believed that the underlying mechanism is caused by a slightly different adap-

tation of each cone type but the details are still debated [Lam, 1985]. It may even be a combination

of cone adaptation and processing in the cortex.

According to the zone theory, the cones’ and rods’ responses are transformed into three neural

signals, which are passed along the nerve fibers. A weighted combination of the three cone- and

rod-responses yields one achromatic signal A that is perceived as brightness. Colour information is

transformed in the form of two difference signals: the red/green opponent colour attribute is the

difference of the L and M cone sensations, C1= L−M ; the yellow/blue opponent colour attribute is

the difference of the two difference signals C2 =M−S and C3 = S− L, that is, C2−C3. The ratio of

C1 and C2−C3 causes a hue sensation in our visual cortex, and their strength conveys colourfulness.

Brightness, hue, and colourfulness are the fundamental attributes of colour sensation. They can

be used to derive relative quantities that model human colour perception. The ratio of a surface’s

brightness A and the brightness An of the reference white defines the lightness sensation [Land

and McCann, 1971]. Setting a surface’s colourfulness in proportion to the reference brightness An

yields chroma. Similarly, comparing a surface’s colourfulness to its own brightness level provides

the saturation sensation.

Hunt [1998] defines common colour appearance terminologies clearly:

• Brightness: attribute of a visual sensation according to which an area appears to exhibit

more or less light.

• Lightness: the brightness of an area judged relative to the brightness of a similarly illumi-

nated area that appears to be white or very highly transmitting.

• Colourfulness: attribute of a visual sensation according to which an area appears to exhibit

more or less of its hue.

• Chroma: the colourfulness of an area judged in proportion to the brightness of a similarly

illuminated area that appears to be white or highly transmitting.
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Figure 2.10: Cone response (V) vs. intensity (log I) curves in the presence of adapting background

illumination from dark adapted luminance (DA) to brighter adaptation luminances (2, 3, 4, 5, and 6

log td). Adapted from [Valeton and van Norren, 1983].
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• Saturation: the colourfulness of an area judged in proportion to its brightness.

• Hue: attribute of a visual sensation according to which an area appears to be similar to one,

or to proportions of two, of the perceived colours, red, yellow, green, and blue.

In this thesis, colour appearance attributes will be discussed by using these terminologies.

2.3.2 Quantifying Perception

Colorimetry in Section 2.2.2 describes colour as it directly relates to physical properties. Considering

that colour is a perceptual sensation triggered by physical stimuli and that electrophysiological mea-

surements of the human eye and brain are quite limited, experimental psychology is an alternative

option to measure human colour perception. Many of the psychophysical measurements necessary

for modelling human colour vision have been conducted in recent decades. Psychophysics is the sci-

entific study to derive the relationships between the physical stimuli and the perceptual sensations

that those stimuli evoke [Fairchild, 2005]. We conducted psychophysical experiments to quantify

human colour perception under high luminance levels to achieve a full range of measurements of

the human visual response (see Chapter 4) and to assess and evaluate the accuracy of our colour

reproduction system, compared with previous work (see Chapter 6).

Psychophysical analysis originates from Weber’s Law, which states that the ratio of the change

in stimulus intensity that achieve a just noticeable difference to the stimulus intensity is constant,

and Fechner’s Law that defines the relationship between the magnitudes of physical stimuli X and

their resulting perceptions S as logarithmic (S = lnX ). In modern psychophysics, the relationship

between the stimuli and their perceptions is described as a power function (S = ↵X β), instead of

logarithmic, by Stevens’ Law [Laming, 1997].

Psychophysical experiments fall into two main categories: threshold and matching to measure

visual sensitivity to small changes in stimuli (or perceptual equality), e.g., measuring just-noticeable

difference (JND) as visual tolerances, and scaling to define a supra-threshold relationship between

the physical stimuli and the perceptual magnitudes from those stimuli, e.g., LUTCHI colour appear-

ance experiments [Luo et al., 1991a].

Threshold and Matching Two different stimuli are presented to observers who are asked whether

they can sense the difference of those stimuli (threshold) or to adjust one of the presented stimuli

to match with the other (matching). In general, these methods yield more accurate measurements

than the sensory scaling methods. For instance, CIE 1931 standard colorimetric observations were

derived from metameric matching experiments [Hunt, 1998]. In these experiments, one colour

is presented to one eye and another colour presented to the other eye with a haploscopic device.

Colour-normal participants are then asked to adjust one colour to match the other by controlling

the proportion of red, green, and blue primary colours. This experiment is based on the assumption

that the adaptation of one eye does not influence the other. Unfortunately it imposes unnatural

viewing conditions with constrained eye movement.

Sensory Scaling For a given stimulus, observers are asked to produce a numerical scale with
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respect to the intensity of a “-ness” property [Engeldrum, 2000], e.g., lightness, colourfulness, or

similarity. The scales belong to one of four different categories. A nominal scale is an indexing

number for classification or identification purposes. An ordinal scale presents the rank of a specific

property of given candidate stimuli. An interval (between scales) describes the difference or distance

between the measured property or characteristic. A ratio scale is a combined scale of the ordinal

and interval scales. This scale includes the zero amount [Fairchild, 2005].

The sensory scaling experiments fall into three main categories: pair comparison, category

judgment, and magnitude estimation types. Pair comparison is an experiment where each pair

combination of a set of stimuli is presented to observers. Observers are then asked to choose which

stimulus exhibits more of a property or characteristic being evaluated. So that the experiment is

not forced-choice, the observers are allowed to choose that both stimuli are equal. Thurstone’s Law

of Comparative Judgement [Thurstone, 1959] is often used to analyse the collected data to quantify

properties of stimuli by transforming them into an interval scale. This method is generally believed

to provide better accuracy in quantifying a property compared with other scaling methods.

Category judgement is a method where a possible magnitude of a property (given to observers)

is scaled in equal intervals. Observers are asked to judge which category a given stimulus falls

into. Torgerson’s Law of Categorical Judgement [Torgerson, 1958] (extended Thurstone’s Law of

Comparative Judgement) allows us to transform the equal-interval scales into relatively-positioned

interval scales with respect to category boundaries.

Magnitude estimation is an experiment where observers are asked to judge a property of a given

stimulus as a ratio scale to represent the extent. Each observer produces different scales, which

are different from other observers. Stevens’ Power Law [Stevens, 1957] is used to manage a large

variation of subjective ratio scales of each observer. We used this magnitude estimation method for

obtaining human colour perception under high luminance levels. See Chapter 4 for more details on

experimental setting and data analysis.

2.3.3 Colour Appearance Phenomena

Colour appearance phenomena occur when identical optical radiation levels are perceived differently

in varying viewing environments. The human visual system presents certain characteristics in how

it perceives the appearance of colour in specific viewing conditions. These are defined as stimulus,

proximal field, background, surround, and adapting field [Hunt, 1998]. Stimulus describes the

physical radiation that invokes colour appearance, generally in a 2◦ angle subtended from the visual

axis of the human eye. The proximal field is the extended area from the edge of a 2◦ stimulus in

all directions. The background presents the environment of the main colour stimulus in a 10◦ area,

outside the 2◦ stimulus. The surround is the field outside the background. See Figure 2.11.

Perceived appearance depends on the environmental viewing conditions. Among the various ef-

fects, this section presents phenomena with respect to our experiments in Chapter 4 (see [Fairchild,

2005] for more details on other phenomena):

• Luminance Effect on Brightness: Stevens and Stevens [1963] describe brightness perception
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Surround

Background

Stimulus

Proximal field

Figure 2.11: Specification of components of the viewing field. Stimulus describes the physical radiation,

generally in a 2◦ angle subtended from the visual axis of the human eye. The proximal field is the

extended area from the edge of a 2◦ stimulus in all directions. The background presents the environment

of the main colour stimulus in a 10◦ area, outside the 2◦ stimulus. The surround is the field outside the

background. Adapted from [Fairchild, 2005].

trends with respect to luminance. They state that the perceived brightness changes according

to luminance and model brightness perception as a power function where the exponent de-

pends on a luminance. This is the Stevens effect. Suppose two identical grey-scales are placed

in a dark room and a bright room. The contrasts of the perceived brightnesses appear differ-

ently. At a low luminance level, the contrast of the perceived grey-scale appears decreased,

while at a high luminance level, the perceived contrast increases, i.e., the dark colours appear

darker, and middle or brighter colours appear brighter under higher luminance levels. This

effect is observed in our experimental data. However, the trend appears more complicated

than a simple power raise. See Chapter 5 for more details on our proposed numerical model

for the Stevens effect.

• Luminance Effect on Colourfulness: The level of luminance influences not only contrast, but

also colourfulness. Suppose we look at colourful objects under bright sun light but we also

observe the identical objects in a dim room. Comparison of the perceived colourfulness find

that the colourfulness of a given stimulus increases with the luminance level; the so-called

Hunt effect [Hunt, 1952]. The Hunt effect is also confirmed by our colour experiments (see

Chapter 4). While Hunt [1952] uses a haploscopic device where two different levels of lumi-

nance are presented to the left and the right eyes respectively, we conducted a psychophysical

memory experiment (see Chapter 4 for more details on the experiments).

• Background Effect: Suppose two identical grey patches are placed on two different back-

grounds, white and black. The grey patch on the black background appears lighter, while
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the identical patch on the white background appears darker. This is called the simultaneous

contrast effect. The change in the background causes the change of colour appearance [Albers,

1963]. The simultaneous contrast for these stimuli depends on the spatial structure of the en-

vironment, rather than colours or edges. These changes were observed for not only lightness

but also for colourfulness in our colour experiments (see Chapter 4 for more details on the

initial findings).

• Surround Effect: Breneman [1977] describes the effects of surround with respect to lumi-

nance. Suppose two identical grey-scales are placed under average and dark surround re-

spectively. The perceived contrast of lightness under the dark surrounds increases while the

contrast under the average surround decreases. Our experimental data indicates that light-

ness contrast decreases while colourfulness increases as the luminance level of the surround

increases. However, as observed in Breneman [1977], our data confirms that the difference

was small and statistically insignificant(see Chapter 4).

• Helson-Judd effect: Helson [1938] states that the chromatic adaptation mechanism works

imperfectly depending on the lightness of the objects. For instance, if a grey scale is illumi-

nated by a yellowish light source like tungsten light, the lighter patches will appear yellowish

exhibiting a certain amount of the hue of the light source. In contrast, the darker patches in

the grey scale will appear bluish.

• Purkinje Break & Shift: Purkinje [1825] describes the activity transition of cones and rods

with respect to luminance. In the luminance range between 0 and ⇠100 cd/m2 (called

mesopic vision), as luminance decreases, cones are gradually deactivated, and rods start to

contribute in sensing luminance. At a certain luminance level (called Purkinje break), the

threshold of luminance increases such that the cones and rods both contribute to luminance

perception. However, further decreases of luminance deactivates cones, and then only rods

contribute to vision. Under dark luminance conditions, the scotopic vision (only rods) also

presents different spectral sensitivity, called Purkinje shift, from photopic vision (only cones).

In dark viewing conditions, the eye’s luminance sensitivity shifts toward short-wavelengths

(bluish) a little, defined as the CIE V 0(λ) function [CIE, 1986]. Peak sensitivity of luminance

shifts from 560nm to 510nm. Targeting extended luminance levels, our model covers photopic

vision only. This phenomenon is not modelled in our appearance model.

LUTCHI Colour Appearance Experiments In order to quantify colour appearance phenomena,

many extensive experiments have been conducted. In particular, the magnitude estimation ex-

periments conducted at the Loughborough University of Technology Computer Human Interface

(LUTCHI) Research Centre provide a significant amount of measurements of colour appearance on

a large variety of media from reflective materials to CRT monitors [Luo et al., 1991a,b, 1993a,b,

1995]. The LUTCHI data set includes relative tristimulus values, viewing conditions (e.g., reference

white, background luminance level, and medium type), and corresponding colour appearance mea-

surements. The data set has been used to revise the Hunt colour appearance model [Hunt, 1991]
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and to derive the LLAB model [Luo et al., 1996]. International standard colour appearance models,

CIECAM97s [CIE, 1998] and CIECAM02 [Moroney et al., 2002], are also derived from this data set.

In [Luo et al., 1991a], six to seven trained colour-normal participants were asked to rate scales

with respect to lightness, colourfulness, and hue of the given stimuli. The viewing environments

varied the level of illumination (low and high, up to ⇠250 cd/m2), medium type (reflective and

CRT), background (white, grey, and black), and white point (CIE A, D50, D65 illuminant). The

results show that the background and reference white influence colour appearance significantly. In

our experiments, we used the almost identical experimental settings to these LUTCHI experiments.

See Sections 4.2 and 4.3.1 for more details. Luo et al. [1991b] compares the performance of a

several colour appearance models, namely CMC, CIELAB, Nayatani’s, Hunt’s 87, and Hunt-ACAM

(being the Alvey Colour Appearance Model), in terms of lightness, colourfulness, and hue. Overall,

the Hunt-ACAM model performs better than the others.

In particular, Luo et al. [1993a] measured brightness along with lightness perception, which

is the only available data set for the relationship between lightness and brightness. Those proper-

ties were measured under six different luminance levels of CIE D50 illuminant. Luo et al. [1993b]

describe the measurements of colour appearance on cut-sheet transparency and 35mm projection,

which are under high levels of luminance up to 1 272 cd/m2. However, they used only four colour

samples between 1 000 and 1 272 cd/m2. Luo et al. [1995] specifically examined the simultane-

ous contrast effect. Five observers scaled lightness, colourfulness, and hue on a CRT display with

varying proximal fields around the main colour samples. This is used for testing the performance of

predicting simultaneous contrast in the Hunt model.

The LUTCHI colour appearance experiments provide an excellent methodology to measure the

perceived colour appearance in a scientific way, and it covers a very wide range of media from reflec-

tive materials to CRT displays. However, most of the luminance levels in the experimental data are

under approximately 690 cd/m2, which was limited by the available display technology in the 90s.

This range of luminance falls short of covering the full range of the human visual system (which is

five-orders of magnitude). Consequently, perceptual colour appearance under extended luminance

levels has not been studied, mainly due to the unavailability of psychophysical data. Therefore, we

conducted psychophysical colour experiments in order to acquire appearance data for many differ-

ent luminance levels (up to 16 860 cd/m2) covering most of the dynamic range of the human visual

system (see Chapter 4 for more details). These experimental data allow us to quantify human colour

perception under extended luminance levels, yielding a new colour appearance model.

Coefficient of Variation In order to evaluate the performance of the colour appearance models, Luo

et al. [1991b] compared models’ predicted attributes to their perceptual measurements of colour

appearance. They evaluated the qualitative difference by employing coefficient of variation (CV);

RMS error with respect to mean in percentage scale. Suppose there are two different data sets x
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and y . The calculation of CV is:

CV=
100

y

»

1

N

X

i

(xi− yi)2 , (2.12)

where y is the mean of the data set y; N number of y elements. The deviation in this CV is calcu-

lated from the difference between two elements (xi− yi) like RMS error, which is then normalised

by the mean. As opposed to this paired comparison, when evaluating the sample variation of a group

x , like inter-observer variation, the difference between each element and the mean (xi− x) is used

instead of the difference of each element (xi− yi) in Equation (2.12):

CV=
100

x

»

1

(N−1)

X

i

(xi− x)2 , (2.13)

where (N −1) is the degree of freedom. We only have (N −1) independent deviations such that

the sum of the N deviations from the mean is always zero:
P

i
(xi− x) = 0. We employed these CV

error methods for evaluating our experiments and model performance in qualitative comparison

with others.

2.3.4 Colour Appearance Models

A colour appearance model (CAM) is a numerical model of the human colour vision mechanism.

Common colour appearance models largely follow the zone theory by modelling human colour vi-

sion as a four-stage procedure, shown in Figure 2.12, comprising chromatic adaptation, dynamic

cone adaptation, achromatic/opponent colour decomposition, and computation of perceptual at-

tribute correlates. Generally, colour appearance models take tristimulus X Y Z values (of the colour

to be perceived) and parameters of the viewing condition to yield perceptual attributes predicting

the perceived colour (commonly lightness, chroma, and hue). Colour appearance models mostly

differ in the specific functions that transform colour quantities across these four stages, the quality

of their prediction, and the different viewing conditions that can be modelled. Popular models are
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Figure 2.12: Modern colour appearance models roughly follow these four stages. First, the incoming

spectrum, sampled as an X Y Z triple, is transformed for chromatic adaptation. This is usually done

in a specialised colour space (though not always). Then, the white-adapted X Y Zc is transformed into

the cone colour space, where a cone-response function is applied (commonly a power or hyperbolic

function). After that, the signal is decomposed in the achromatic channel A and the colour opponent

channels a and b. The perceptual correlates are based on these three channels. This is where colour

appearance models differ most, as a large range of functions are applied to yield perceptual values.
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the simple CIELAB model, RLAB [Fairchild, 1991], Hunt94 [Hunt, 1994], LLAB [Luo et al., 1996],

CIECAM97s [CIE, 1998], up to the recent and currently widely accepted CIECAM02 [Moroney et al.,

2002].

Many different colour appearance models have been proposed over the years. We will briefly

review the common models with more details on their mathematical modelling (see [Fairchild,

2005] for a complete overview of other colour appearance models). For the purpose of developing

our colour appearance model, we conducted a review of the mathematical details of other colour

appearance models.

This section contains detailed description of the mathematics of the models. This is included

as a reference to the reader for completeness. Section 2.3.6 summarises the following models in

sufficient detail for those readers not requiring the reference.

CIELAB CIELAB (or CIELCH) [CIE, 1986] is a very simple colour appearance model that is purely

based on X Y Z tristimulus values. Chromatic adaptation is performed by dividing X Y Z values by

normalised white point values X Y Zw . This is a modified form of the von Kries chromatic adaptation

transform [von Kries, 1970], and the cone response is modelled as a cube root. Only lightness,

chroma, hue, and colour opponents (a and b) are predicted. It does not model any adaptation to

different backgrounds or surround changes. Despite these simplifications, it still performs rather

well (see Chapter 5 for more details on its performance).

Input parameters to the CIELAB model are:

• Normalised (Y equal to 100) CIE tristimulus values (observed main colours): X Y Z ,

• Normalised tristimulus values of the reference white point: XnYnZn.

CIELAB takes only normalised input values without taking any environmental viewing conditions

into account. The colour appearance attributes are modelled as follows:

Lightness L⇤ = 116 f
�

Y /Yn
�−16 , (2.14)

Redness−Greenness a⇤ = 500
⇥

f
�

X/Xn
�− f

�

Y /Yn
�⇤

, (2.15)

Yellowness−Blueness b⇤ = 200
⇥

f
�

Y /Yn
�− f

�

Z/Zn
�⇤

, (2.16)

where f (x) =

8

<

:

x1/3 , x > 0.008856

7.787x+16/116 , x  0.008856
, (2.17)

Chroma C⇤ab =
p

(a⇤)2+(b⇤)2 , (2.18)

Hue angle hab = tan−1(b⇤/a⇤) . (2.19)

CIELAB is the oldest model that was derived from the psychophysical approach in 1976. Al-

though CIELAB does not consider background or surround environmental conditions, it performs

considerably well for general purposes (see Chapter 5 for quantitative comparison).

RLAB RLAB [Fairchild, 1991] is a revised version of CIELAB that takes different viewing con-

ditions into account. In particular, it supports different media and different surround conditions.
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RLAB comprises a chromatic adaptation transform and appearance attribute calculation. Chromatic

adaptation is performed in LMS cone colour space, but colour attributes are still computed from

white-adapted X Y Z values.

Input parameters to the RLAB model are:

• Normalised (Y equal to 100) CIE tristimulus values (observed main colours): X Y Z ,

• Normalised tristimulus values of the reference white point: XnYnZn,

• Level of luminance of the reference white point: YN [unit: cd/m2],

• Model parameters: D and σ,

where D depends on a medium type: D= 1.0 corresponds to hard-copy print, soft-copy CRT display

yields D= 0.0, and an intermediate value is used for projected images in a darkroom. (D= 0.5 is

used with no available data.) σ corresponds to the surround condition: 1/2.3 (for dark), 1/2.9 (for

dim), and 1/3.5 (for average) respectively.

First, the input tristimulus X Y Z values are transformed into LMS cone signals by using the

Hunt-Pointer-Estévez (HPE) transform, MHPE, originated from [Estévez, 1979]:
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From the transformed cone signals, the model computes von Kries chromatic adaptation scalars aL ,

aM , and aS to accomplish chromatic adaptation in the LMS cone colour space:

aL =
pL+D(1− pL)

Ln
, aM =

pM +D(1− pM )
Mn

, aS =
pS+D(1− pS)

Sn
, (2.21)

where the inner parameters pL , pM , and pS are calculated as follows:

pL =
(1+Y 1/3

N + lE)

(1+Y 1/3
N +1/lE)

, pM =
(1+Y 1/3

N +mE)

(1+Y 1/3
N +1/mE)

, pS =
(1+Y 1/3

N + sE)

(1+Y 1/3
N +1/sE)

, (2.22)

where lE =
3Ln

Ln+Mn+Sn
, mE =

3Mn

Ln+Mn+Sn
, sE =

3Sn

Ln+Mn+Sn
. (2.23)

The adaptation scalars form a diagonal matrix A to apply to the adaptation transform, then the

cone signals are transformed into tristimulus values with respect to the model’s reference viewing

condition (CIE D65 illuminant in 318 cd/m2).
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Then, the colour appearance attributes are modelled as follows:

Lightness LR = 100
Ä

Yre f

äσ
, (2.25)

Redness−Greenness aR = 430
h

Ä

Xre f

äσ−
Ä

Yre f

äσ
i

, (2.26)

Yellowness−Blueness bR = 170
h

Ä

Yre f

äσ−
Ä

Zre f

äσ
i

, (2.27)

Chroma CR =
∆

�

aR�2+
�

bR�2 , (2.28)

Saturation sR =
CR

LR , (2.29)

Hue angle hR = tan−1(bR/aR) . (2.30)

Finally, hue composition HR is calculated by linear interpolation of the values in Table 2.3.

hR Red Blue Green Yellow HR

24 100 0 0 0 R

90 0 0 0 100 Y

162 0 0 100 0 G

180 0 21.4 78.6 0 B79G

246 0 100 0 0 B

270 17.4 82.6 0 0 R83B

0 82.6 17.4 0 0 R17B

24 100 0 0 0 R

Table 2.3: Hue angle conversion to hue composition in the RLAB model.

The RLAB model includes a rigorous medium parameter D, accepting that colour appearance

depends on medium type. On the other hand, it conducts the chromatic adaptation in the physiolog-

ical cone colour space; but we experienced that its hue and colourfulness estimation performance

is reduced when compared to the original, CIELAB (see Chapter 5 for more details on comparison).

Thus, we were skeptical that the physiologically-plausible structure is a better choice than the hybrid

structure (psychophysical chromatic adaptation and physiological pipeline), and our model inherits

the hybrid structure instead of the physiologically-plausible structure for chromatic adaptation (see

Chapter 5).

Hunt94 Hunt94 is the latest in a series of colour appearance models by the author [Hunt, 1982;

Hunt and Pointer, 1985; Hunt, 1987, 1991, 1994]. The Hunt94 model is a predecessor to the

CIECAM97s model. The Hunt94 model is based on the physiological zone theory [Müller, 1930].

For instance, the Hunt94 model does not have the separate chromatic adaptation procedure at the

beginning, whereas the adaptation is generally adopted for high accuracy in other colour appearance

models. To place chromatic adaptation before the cone responses using the von Kries transform is

not physiologically plausible, at least under the assumption that not the cones but the visual cortex

interprets the hue of colours. Differing from CIECAM97s and CIECAM02, the chromatic adapta-
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tion in the Hunt94 model is implemented as part of the cone adaptation calculation. Nonetheless,

the Hunt94 model provides a basic structure in comparison to other colour appearance models.

However, its application has been limited by the mathematical complexity of the model (the most

complicated model ever).

The model comprises three stages: dynamic cone adaptation, colour decomposition (achro-

matic and colour opponent signals), and colour appearance attribute modelling. It has the largest

number of input parameters among colour appearance models:

• Normalised (Y equal to 100) CIE tristimulus values (observed main colours): X Y Z ,

• Normalised tristimulus values of the reference white point: XW YW ZW ,

• Level of luminance adaptation: LA [unit: cd/m2]

(LA is normally taken to be 20% of the luminance of the reference white.),

• Normalised luminance of background: Yb,

• Scotopic luminance of the adapting field: LAS [unit: scotopic cd/m2]

(LAS can alternatively be approximated from the photopic luminance adaptation:

LAS = 2.26LA(T/4000−0.4)1/3 where T is correlated colour temperature),

• Scotopic normalised luminance of colour sample to the reference white: S/SW ,

(If it is not available, Y /YW can be substituted instead.)

• Background parameters: Ncb and Nbb [Ncb = Nbb = 0.725(YW/Yb)0.2],

• Surround parameters (specified in Table 2.4): Nb and Nc .

Surround conditions Nb Nc

Small areas in uniform backgrounds and surrounds 300 1.0

Normal scenes 75 1.0

Television and CRT displays in dim surrounds 25 1.0

Cut-sheet transparencies on light boxes 25 0.7

Projected transparencies in dark surrounds 10 0.7

Table 2.4: Surround parameters in the Hunt94 model.

First, the input tristimulus values are transformed into a physiological cone colour spaces using

the HPE transform (see 2.20 for more details of the transform):
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They are then compressed by the revised Naka-Rushton equation [see Equations (2.11) and (2.33)]:

⇢a = B⇢[ fn(FL F⇢⇢/⇢W )+⇢D]+1 ,

γa = Bγ[ fn(FL Fγγ/γW )+γD]+1 , (2.32)

βa = Bβ[ fn(FL Fββ/βW )+βD]+1 ,
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where the function fN is defined as:

fn(I) = 40[I0.73/(I0.73+2)] . (2.33)

Here we can observe the exponent constant is almost identical to [Valeton and van Norren, 1983]

(0.73 ⇡ 0.74), which is derived from primate cone measurements. The luminance-level adaptation

is modelled as FL , which is inherited in CIECAM97s and CIECAM02:

FL = 0.2k4(5LA)+0.1(1−k4)2(5LA)
1/3, k= 1/(5LA+1) . (2.34)

The formulae below also include the chromatic adaptation factors F⇢, Fγ, and Fβ , which are mod-

elled as follows:

F⇢ = (1+ L1/3
A +h⇢)/(1+ L1/3

A +1/h⇢) ,

Fγ = (1+ L1/3
A +hγ)/(1+ L1/3

A +1/hγ) , (2.35)

Fβ = (1+ L1/3
A +hβ )/(1+ L1/3

A +1/hβ ) ,

where parameters h⇢, hγ, and hβ are modelled:

h⇢ = 3⇢W/(⇢W +γW +βW ) , hγ = 3γW/(⇢W +γW +βW ) , hβ = 3βW/(⇢W +γW +βW ) . (2.36)

As opposed to other appearance models, the Hunt94 model predicts the Helson-Judd effect (see

Section 2.3.3 for more details on the effect) and the cone pigment bleaching effect. In the above

formulae, scalars ⇢D, γD, and βD are used for modelling the Helson-Judd effect:

⇢D = fn[(Yb/YW )FL Fγ]− fn[(Yb/YW )FL F⇢] ,

γD = 0.0 , (2.37)

βD = fn[(Yb/YW )FL Fγ]− fn[(Yb/YW )FL Fβ] .

The pigment bleach is modelled as follows:

B⇢ = 107/[107+5LA(⇢W/100)] ,

Bγ = 107/[107+5LA(γW/100)] , (2.38)

Bβ = 107/[107+5LA(βW/100)] .

For the next stage, the Hunt94 model calculates achromatic signals and colour opponent signals.

The achromatic signal transform in the Hunt94 model is rather complicated. The Hunt94 model

even considers the photopic and scotopic vision. First, photopic vision is modelled by taking a

weighted average of the three cones (L:M:S ⇡ 40:20:1) [Vos and Walraven, 1971]:

Aa = 2⇢a+γa+(1/20)βa−3.05+1 . (2.39)

Second, the scotopic vision is modelled in a more complex way as follows:

AS = 3.05BS[ fn(FLSS/SW )]+0.3 , (2.40)
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where the parameters FLS and BS are defined as:

FLS = 3800 j25LAS/2.26+0.2(1− j2)4(5LAS/2.26)1/6 , (2.41)

where j = 0.00001/(5LAS/2.26+0.00001) , (2.42)

BS = 0.5/{1+0.3[(5LAS/2.26)(S/SW )]
0.3}+0.5/[1+5(5LAS/2.26)] . (2.43)

The photopic and scotopic achromatic signals, Aa and AS , are combined to an achromatic signal:

A= Nbb(Aa−1+AS−0.3+
p

12+0.32) . (2.44)

Then, the intermediate colour opponent signals C1, C2, and C3 are derived from zone theory:

C1 =⇢a−γa, C2 = γa−βa, C3 = βa−⇢a . (2.45)

These parameters yield redness–greenness and yellowness–blueness coordinates:

Redness−Greenness MRG = 100[C1−(C2/11)][eS(10/13)NcNcb] , (2.46)

Yellowness−Blueness MY B = 100[(1/2)(C2−C3)/4.5][eS(10/13)NcNcbFt] , (2.47)

where eS = e1+(e2− e1)
(hS−h1)
(h2−h1)

, (2.48)

Ft = LA/(LA+0.1) . (2.49)

Finally, the following colour appearance attributes are modelled, where the Hunt94 model

calculates the brightness level first, then computes lightness:

Brightness Q= [7(A+M/100)]0.6N1−N2 , (2.50)

where M =
∆

M2
RG+M2

Y B , N1 =
(7AW )0.5

5.33N0.13
b

, N2 =
7AW N0.362

b

200
, (2.51)

Lightness J = 100
✓

Q

QW

◆z

, where z = 1+(Yb/YW )
0.5 , (2.52)

where the achromatic signal QW of the reference white point X Y ZW is calculated in the same way

as X Y Z main colours. In this model, lightness and brightness are related with saturation, chroma,

and colourfulness through the chromatic response parameter M [see Equation (2.51)]:

Saturation s= 50M/(⇢a+γa+βa) , (2.53)

Chroma C94 = 2.44s0.69(Q/QW )
Yb/YW (1.64−0.29Yb/YW ) , (2.54)

Colourfulness M94 = C94F0.15
L . (2.55)

The hue angle hs is computed from the internal colour opponent signals, and the hue quadrature H

(0–400) is computed by interpolating with respect to the eccentricity of each hue:

Hue hS = tan−1


(C2−C3)/9
C1−(C2/11)

�

, (2.56)

Hue quadrature H = H1+
100(hS−h1)/e1

(h−h1)/e1+(h2−h)/e2
, (2.57)
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Unique Hue Red Yellow Green Blue

Hue angle hS 20.14 90.00 164.25 237.53

Eccentricity eS 0.8 0.7 1.0 1.2

Hue quadrature H 0 100 200 300

Table 2.5: Hue eccentricity parameters in the Hunt94 model.

where H1, h1, and e1 are the hue quadrature, the hue angle, and the eccentricity values of the

nearest lower unique hue angle of a given hue angle hS; h2 and e2 are the hue angle and the

eccentricity values of the nearest higher unique hue angle of hS in Table 2.5.

The Hunt94 model was derived from a long study on photographic media, conducted at the

Kodak research lab [Hunt, 1982; Hunt and Pointer, 1985; Hunt, 1987, 1991, 1994]. The formu-

lae and structures were accumulated over many years. However, it involves a high complexity in

mathematics, which results in a high computational cost and limits the model’s broad application.

However, it forms the basic structure of modern colour appearance models.

LLAB The LLAB model [Luo et al., 1996] was derived from the analysis of psychophysical exper-

imental data, namely the LUTCHI colour appearance data set [Luo et al., 1991a,b, 1993a,b, 1995]

(see Section 2.3.3 for more details). The LLAB model comprises chromatic adaptation (adopted

from the so-called Bradford chromatic adaptation transform [Lam, 1985]) and a revised CIELAB

colour space. Its structure is similar in a sense to the RLAB model. The LLAB model takes back-

ground measurements and surround parameters in order to predict the change of colour appearance

by the luminance levels of background and surround, as observed in their experimental data.

We review the mathematical details of this model that were revised and presented in [Luo and

Morovic, 1996]. The input parameters to the LLAB model are:

• Normalised (Y equal to 100) CIE tristimulus values (observed main colours): X Y Z ,

• Normalised tristimulus values of the reference white point (test): XoYoZo.

• Normalised tristimulus values of the reference white point (target): Xor
Yor

Zor

(The reference illuminant is defined to be CIE illuminant D65,

X Y Zor
= [95.05, 100.00, 108.08]).

• Level of luminance of the reference white point: L [unit: cd/m2],

• Normalised luminance of background: Yb,

• Surround parameters: D, FS , FL , and FC (see Table 2.6).

First, normalised input tristimulus values are transformed into a psychophysically sharpened (opti-

mised) colour space through the Bradford chromatic adaptation transform MBFD [Lam, 1985]:
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Surround conditions D FS FL FC

Reflective samples in average surround (>4◦) 1.0 3.0 0.0 1.0

Reflective samples in average surround (4◦) 1.0 3.0 1.0 1.0

Television in dim surround 0.7 3.5 1.0 1.0

Cut-sheet transparencies in dim surround 1.0 5.0 1.0 1.1

35mm projection transparencies in dark surround 0.7 4.0 1.0 1.0

Table 2.6: Surround parameters in the LLAB model.

Three cone responses are adapted to the test reference white point as follows:

Rr = [D(Ror
/Ro)+1−D]R , (2.59)

Gr = [D(Gor
/Go)+1−D]G . (2.60)

In particular, the blue response is changed nonlinearly:

Br =

8

<

:

[D(Bor
/Bβo )+1−D]Bβ , B> 0

−[D(Bor
/Bβo )+1−D] |B|β , B 0

, where β = (Bo/Bor
)0.0834 . (2.61)

The above function is added to achieve a better fit of the model to the psychophysical experimen-

tal data, improving the accuracy of the chromatic adaptation [Lam, 1985]. However, it leads to

non-equal energy of the three cones and also limits the analytical invertibility of the chromatic

adaptation. The scaled RGB responses are transformed back to tristimulus XYZ values:
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. (2.62)

In the second stage, the LLAB model computes colour appearance attributes. Lightness and

colour opponent channels are modelled in a similar way to CIELAB:

Lightness LL = 116 f (Yr/100)z−16 , z = 1+ FL(Yb/100)1/2 , (2.63)

Redness−Greenness A= 500
î

f
Ä

Xr/Xor

ä

− f
Ä

Yr/Yor

äó

, (2.64)

Yellowness−Blueness B= 200
î

f
Ä

Yr/Yor

ä

− f
Ä

Zr/Zor

äó

, (2.65)

where f (x) =

8

<

:

x1/Fs , x > 0.008856
✓

0.0088561/Fs− 16
116

0.008856

◆

x+ 16
116

, x  0.008856
.
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The other colour appearance attributes are calculated as follows:

Chroma ChL = 25ln(1+0.05C), where C =
p

A2+B2) , (2.66)

Colourfulness CL = ChLSM SC FC , (2.67)

where SM = 0.7+0.02LL−0.0002L2
L , (2.68)

SC = 1.0+0.47log L−0.057(log L)2 , (2.69)

Saturation SL =
ChL

LL
, (2.70)

Hue angle hL = tan−1(B/A) , (2.71)

Hue quadrature HL = HL1+(HL2−HL1)(hL−hL1)/(hL2−hL1) , (2.72)

where HL1 and hL1 are the hue quadrature and the hue angle of the nearest lower unique hue angle

of a given hue angle hL; HL2 and hL2 are the hue quadrature and the hue angle of the nearest higher

unique hue angle of hL in Table 2.7.

hL HL Red Yellow Green Blue NCS expression

25 0 100 0 0 0 R

62 50 50 50 0 0 R50Y

93 100 0 100 0 0 Y

118 150 0 50 50 0 Y50G

165 200 0 0 100 0 G

202 250 0 0 50 50 G50B

254 300 0 0 0 100 B

322 350 50 0 0 50 B50R

Table 2.7: Hue angle conversion to hue composition in the LLAB model.

As observed in the RLAB model, the LLAB model noted that the colour appearance depends on

the medium type, so the LLAB model includes medium-dependent parameters, e.g., for cut-sheet

transparencies distinctive from other reflective media. We also experienced and include such a

change of colour appearance due to the medium type after analysis of our experimental data and

LUTCHI data (see Chapter 5 for more details).

CIECAM97s CIECAM97s [CIE, 1998] is a predecessor to CIECAM02 and similar in spirit to, but

much more complex than, CIECAM02. Historically, CIECAM97s is a combination of the Hunt94

model (having physiological plausibleness) and the LLAB model (based on psychophysical data).

The chromatic adaptation transform, the Bradford chromatic adaptation transform [Lam, 1985], is

adopted from the LLAB model. The structure is adopted from the Hunt94 model. It is a considerable

challenge to merge the psychophysical (LLAB) and physiologically-plausible (Hunt94) aspects into a

model to achieve improved performance. However, its practical applicability is limited. For instance,

the Bradford chromatic adaptation transform is non-invertible as it includes non-linear compression
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of the short cone (blue) signals, and the performance in the prediction of saturation is unstable as

it is influenced by its hue and luminance levels. CIECAM02 is in many respects its simpler but more

powerful successor, overcoming the drawbacks of CIECAM97s.

We review the mathematical details of the CIECAM97s model. The input parameters for this

model are:

• Normalised (Y equal to 100) CIE tristimulus values (observed main colours): X Y Z ,

• Normalised tristimulus values of the reference white point: XW YW ZW ,

• Level of luminance adaptation: LA [unit: cd/m2]

(LA is normally taken to be 20% of the luminance of the reference white.),

• Normalised luminance of background: Yb,

• Surround parameters (specified in Table 2.8): c, Nc , F , and FLL .

In particular, the input parameters to the CIECAM97s model includes a medium-dependent param-

eter FLL for the surround (see Table 2.8). The parameter specifies cut-sheet transparencies data,

which is removed in CIECAM02.

Surround conditions c Nc F FLL

Average surround (>4◦) 0.69 1.0 1.0 0.0

Average surround (4◦) 0.69 1.0 1.0 1.0

Dim surround 0.59 1.1 0.9 1.0

Dark surround 0.525 0.8 0.9 1.0

Cut-sheet transparencies 0.41 0.8 0.9 1.0

Table 2.8: Surround parameters in the CIECAM97s model.

For the first stage, the CIECAM97s model uses the Bradford chromatic adaptation transform,

MBFD [see Equation (2.58) in the LLAB model], which is often called CMCCAT97, which is inherited

from the LLAB model:
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. (2.73)

As in the LLAB model, red and green responses are adapted to the test reference white point as

follows:

Rc = [D(1.0/RW )+1−D]R , (2.74)

Gc = [D(1.0/GW )+1−D]G , (2.75)

Bc =

8

<

:

[D(1.0/Bp
W )+1−D]Bp , B> 0

−[D(1.0/Bp
W )+1−D] |B|p , B 0

, where p= (BW/1.0)0.0834 . (2.76)
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CIECAM97s suffers the non-invertibility problem of the chromatic adaptation, which is inherited

from the LLAB model. It was later on modified in CIECAM02 to address the invertibility problem.

After the chromatic transformation, the scaled RGB responses are transformed back to tristimulus

XYZ values, and then transformed into the cone colour space by using the HPE transform, MHPE, as

in RLAB [see Equation (2.20) for more details on the transform]:
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. (2.77)

Second, a hyperbolic function, originating from the Naka-Rushton equation [Equation (2.11)],

compresses the cone signals:

⇢a =
40(FL⇢/100)0.73

(FL⇢/100)0.73+2
+1 ,

γa =
40(FLγ/100)0.73

(FLγ/100)0.73+2
+1 , (2.78)

βa =
40(FLβ/100)0.73

(FLβ/100)0.73+2
+1 ,

where parameter FL is calculated by a polynomial function. This is the same as Equation (2.34) in

the Hunt94 model.

Third, the cone responses are transformed into achromatic signals and colour opponent signals.

The achromatic signals A are modelled as follows:

Achromatic signal A= [2R
0
a+G

0
a+0.05B

0
a−2.05]Nbb , (2.79)

n= Yb/YW , Nbb = Ncb =
0.725

n0.2 . (2.80)

The colour opponent signals, redness-greenness (a) and yellowness-blueness (b), are calculated

(inherited from Hunt94) as follows:

Redness−Greenness a= R
0
a−

12

11
G
0
a+

1

11
B
0
a , (2.81)

Yellowness−Blueness b=
1

9
(R
0
a+G

0
a−2B

0
a) . (2.82)

Finally, the following colour appearance attributes are modelled as follows:

Lightness J = 100
✓

A

AW

◆cz

, z = 1+ FLLn0.5 , (2.83)

Brightness Q= (1.24/c)(J/100)0.67(Aw+3)0.9 , (2.84)

where the achromatic signal AW of the reference white point X Y ZW is calculated in the same way

as the X Y Z main colours.

Chroma C = 2.44s0.69(J/100)0.67n(1.64−0.29n) , (2.85)

Colourfulness M = C F0.15
L , (2.86)

Saturation s=
50
p

a2+ b2100e(10/13)NcNcb

⇢a+γa+(21/20)βa
, (2.87)
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where e is calculated by Equation (2.48) in the Hunt94 model. Hue angle h is derived by converting

a and b into polar coordinates:

Hue angle h= tan−1(b/a) . (2.88)

The calculation of the hue quadrature H values are identical to those of the Hunt94 model [see

Equation (2.57) and Table 2.5].

CIECAM97s forms the basic structure of the current standard appearance model, CIECAM02.

The detailed differences are: the chromatic adaptation transform, the Bradford transform, is substi-

tuted with a new chromatic transform, CIECAT02, in order to rectify the invertibility problem, and

the equations of colour appearance attributes are optimised differently in CIECAM02.

CIECAM02 CIECAM02 [Moroney et al., 2002] is considered one of the most complete and accurate

colour appearance models. It originates from the CIECAM97s model through a few modifications

[Fairchild, 2001; Hunt et al., 2002] (often called the Fairchild model and the FC model respec-

tively). It follows the zone theory closely, but includes psychophysical optimisation in the chromatic

adaptation.

First, chromatic adaptation is performed using CIECAT02, which supports varying degrees of

adaptation. The resulting white-adapted X Y Z values are then normalised. The cone response is

modelled using Equation (2.11), but with a fixed σ, which causes the response to be similar to a

power function (see Chapter 5 for more details on each equation). The opponent colour decom-

position follows Section 2.3.1 closely. The final attributes include lightness, brightness, chroma,

colourfulness, hue and saturation. CIECAM02 can model different surroundings and adaptation

levels.

We review the mathematical details of the CIECAM02 model. Many parts are similar or iden-

tical to CIECAM97s, hence we describe only the formulae that are different. Note that the medium

dependent parameter FLL in CIECAM97s is removed in CIECAM02 (see Table 2.9). The input pa-

rameters for the CIECAM02 model are:

• Normalised (Y equal to 100) CIE tristimulus values (observed main colours): X Y Z ,

• Normalised tristimulus values of the reference white point: XW YW ZW ,

• Level of luminance adaptation: LA [unit: cd/m2]

(LA is normally taken to be 20% of the luminance of the reference white.),

• Normalised luminance of background: Yb,

• Surround parameters (specified in Table 2.9): c, Nc , and F .

The main procedures fall into four different stages.

First, the physically-meaningful input tristimulus values X Y Z are adapted with respect to the

reference white point to yield colour constancy. Chromatic adaptation is calculated in a psychophys-

ically sharpened colour space, called CIECAT02, originating from the revision of the CMCCAT2000
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Surround conditions c Nc F

Average surround 0.69 1.0 1.0

Dim surround 0.59 0.9 0.9

Dark surround 0.525 0.8 0.8

Table 2.9: Surround parameters in the CIECAM02 model.

transform [Li et al., 2002]:
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. (2.89)

The Matrix MCAT02 is normalised such that the tristimulus values for the equal-energy illuminant

(X = Y = Z =100) produce equal cone responses (L=M =S=100) to ensure analytical invertibility.

This means that the model handles the responses of three cones equally (which is then re-scaled by

the proportion of their respective populations). The degree of chromatic adaptation depends on the

absolute luminance level of LA, which is modelled as a parameter D:

D= F


1−
✓

1

3.6

◆

e
⇣−(LA+42)

92

⌘

�

. (2.90)

Then, the chromatic adaptation is modelled in the CIECAM02 as follow:

RC = [(100D
�

RW )+(1−D)]R ,

GC = [(100D
�

GW )+(1−D)]G ,

BC = [(100D
�

BW )+(1−D)]B .

(2.91)

The chromatically adapted values in CIECAT02 are then inverted back to the original CIEXYZ colour

space through the inverse matrix, M−1
CAT02.

Second, chromatically adapted colours are transformed into the physiological LMS cone colour

space by using the HPE transform [see Equation (2.20) in the RLAB model]:
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The linear cone responses are compressed with a hyperbolic function. Although the function is

derived from different optimisation (exponent changed from 0.73 to 0.42), they are similar to

CIECAM97s’ cone response functions:

R
0
a =

400(FLR0/100)0.42

27.13+(FLR0/100)0.42 +0.1 ,

G
0
a =

400(FLG0/100)0.42

27.13+(FLG0/100)0.42 +0.1 , (2.93)

B
0
a =

400(FLB0/100)0.42

27.13+(FLB0/100)0.42 +0.1 ,
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where FL is calculated by Equation (2.34) in the Hunt94 model. In Chapter 5, we claim that the way

to model cone responses in current colour appearance models can be improved upon to increase the

dynamic range of our colour appearance model. We will discuss modelling cone responses later (see

Chapter 5 for more details).

Third, the simulated cone responses are transformed into achromatic signals and colour op-

ponent signals. Achromatic signals are calculated as an average with respect to the population of

the three cones (inherited from the Hunt94 model). Compared to CIECAM97s, only the achromatic

signal equation is modified:

A= [2R
0
a+G

0
a+(1/20)B

0
a−0.305]Nbb , (2.94)

where n= Yb/YW , Nbb =
0.725

n0.2 . (2.95)

The colour opponent signal equations [redness-greenness (a) and yellowness-blueness (b)] are

identical to the CIECAM97s model [see Equation (2.81) and (2.82)]. Finally, colour appearance

attributes for a given stimulus are calculated: lightness (J), brightness (Q), chroma (C), saturation

(s) and hue angle (h), colourfulness (M) and hue composition (H):

Lightness J = 100
✓

A

AW

◆cz

, z = 1.48+
p

n , (2.96)

Brightness Q=
4

c

«

J

100

�

AW +4
�

F0.25
L , (2.97)

where the achromatic signal AW of the reference white point X Y ZW is calculated in the same way

as X Y Z main colours.

Chroma C = t0.9
p

J/100(1.64−0.29n)0.73 , (2.98)

where t =
(50000/13)NcNcbet

p

a2+ b2

R0a+G0a+(21/20)B0a
, (2.99)

et = 1/4[cos(h
⇡

180
+2)+3.8], Ncb =

0.725

n0.2 , (2.100)

Colourfulness M = C F0.25
L , (2.101)

Saturation s= 100

r

M

Q
. (2.102)

The calculation of hue angle h is directly inherited from the CIECAM97s model [see Equa-

tion (2.88)], and the calculation of hue quadrature H from the hue angle h is identical to those

of the Hunt94 model and the CIECAM97s model [see Equation (2.57) and Table 2.5].

Generally, the performance of the CIECAM02 model is good, and it is the current international

standard for colour appearance modelling. However, as we will see in Chapter 5, it has difficulties

with higher luminance levels, both in terms of colourfulness as well as lightness. We partially

attribute this to the fact that input X Y Z values are normalised, which seems to lose important

information.

Kunkel and Reinhard [2009] Kunkel and Reinhard [2009] introduced a neurophysiology-inspired

colour appearance model, which shows that chromatic adaptation and response compression in
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CIECAM02 could be combined and that colour opponent channels could be derived from neuro-

physiological evidence [De Valois et al., 1997]. Compared to CIECAM02, their model removes the

chromatic adaptation transform matrix [see Equation (2.89) for the transform] and merges the de-

gree of adaptation in the chromatic adaptation [see Equations (2.90) and (2.91)] into a dynamic

cone response function [see Equation (2.93)]. This revision changes the value σ for each cone

respectively in the physiological cone response function [see Equation (2.11)]. This models the

different responsivity trends (response curve shapes) of the three LMS cones. Consequently, their

model employs different LMS ratios (4.19:1.00:1.17) for computing achromatic signals [see Equa-

tion (2.94)] and three different stages of colour opponent signals. First, a set of colour opponent

signals (ac ,bc) is used for modelling the chroma attribute:
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, (2.103)

where d is a normalisation constant and L0, M 0, and S0 are non-linear cone responses. Then, chroma

C is calculated as follows:

C = (103 t)0.9

«

J

100
(1.64−0.29n)0.73, where t =

NcNcb

p

a2
c + b2

c

d
, (2.104)

and J is lightness, see Equations (2.95) and (2.100) and Table 2.9 for Nc , Ncb, and n in CIECAM02.

A second set of colour opponent signals (ah, bh) is used to compute intermediate hue attributes h

[a polar coordinate of (ah, bh)]:
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Finally, a third set of colour opponent signals (a00, b00) is derived from the ganglion-derived colour

primaries rp, gp, yp, and bp:

a00 = rp− gp, (2.106)

b00 = yp− bp, (2.107)
where

rp =max(0,0.6581cos0.5390(9.1−h)), (2.108)

gp =max(0,0.9482cos2.9435(167.0−h)), (2.109)

yp =max(0,0.9041cos2.5251(90.9−h)), (2.110)

bp =max(0,0.7832cos0.2886(268.4−h)). (2.111)

The colour opponent signals are converted into a polar coordinate h0 [see Equation (2.88)].

Their model is simpler and theoretically more plausible in modelling cone response and chro-

matic adaptation than CIECAM02. It also shows a higher accuracy in predicting hue attributes when

compared with CIECAM02, although it does not present significant improvements in predicting
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lightness and colourfulness attributes. In addition, their model is invertible, hence can be used for

imaging applications. It is interesting future work to combine their hue prediction with our colour

appearance model.

2.3.5 Colour Difference

If a colour space is perceptually uniform, the difference between two colours can be represented

as the Euclidean distance between their coordinates. The CIE 1976 uniform colour space, CIELAB,

defines colour difference CIE ∆E as the Euclidean distance between two colours:

∆E⇤ab =
∆

(L⇤1− L⇤2)
2+(a⇤1−a⇤2)

2+(b⇤1− b⇤2)
2 . (2.112)

However, it was found that perceptual uniformity of colour difference is not consistent, in particular

around the blue hue [Luo et al., 2001]. Many other colour difference formulae have been suggested

to correct the non-uniformity, e.g., CMC(l : c) [Clarke et al., 1984], BFD(l : c) [Luo and Rigg, 1987],

CIE94 [CIE, 1995], and CIEDE2000 [CIE, 2001] colour differences. Below, we briefly review the

latest standard colour difference, CIEDE2000,∆E00. This revision is based on psychophysical exper-

iment data accumulated over many years, and its basic structure is similar to that of the BFD(l : c)

colour difference formula.

CIEDE2000 is the Euclidean distance between two CIELCH coordinates, where the difference

of each dimension is rescaled by constants and an additional term is introduced for hue and chroma

interaction. First CIEDE2000 computes intermediate colour coordinates L0, a0, b0, C 0ab, and h0ab for

the CIELAB coordinates:

L0 = L⇤ , (2.113)

a0 = (1+G)a⇤ , (2.114)

b0 = b⇤ , (2.115)

C 0ab =
p

a02+ b02 , (2.116)

h0ab = tan−1(b0/a0) , (2.117)

where G = 0.5
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, (2.118)

and C⇤ab

7
is the mean of the C⇤ab values for two different colours. Then, each colour difference in

each dimension is calculated as ∆L0, ∆C 0, and ∆H 0:

∆L0 = L01− L02 , (2.119)

∆C 0ab = C 0ab,1−C 0ab,2 , (2.120)

∆H 0ab = 2
∆

C 0ab,1C 0ab,2 sin

Ç

∆h0ab

2

å

, (2.121)

where ∆h0ab = h0ab,1−h0ab,2 . (2.122)
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After that, three weighting scalars SL , SC , and SH are computed as follow:

SL = 1+
0.015(L0 −50)2

(20+(L0 −50)2)1/2
, (2.123)

SC = 1+0.045C 0ab , (2.124)

SH = 1+0.015C 0abT , (2.125)

where T = 1−0.17cos(h0ab−30◦)+0.24cos(2h0ab)+0.32cos(3h0ab+6◦)−0.20cos(4h0ab−63◦),

(2.126)

and L0 is the mean of two different L0s, and h0ab is the mean of the two angles:

h0ab =

8

<

:

(h0ab,1+h0ab,2)/2, h0ab  180◦

(h0ab,1+h0ab,2)/2−180, h0ab > 180◦
. (2.127)

The hue–chroma interaction factor RT is modelled as follows:

RT =−sin(2∆✓ )RC , (2.128)

where ∆✓ = 30exp
n

−[(h0ab−275◦)/25]2
o

, (2.129)
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0

B

@

C 0ab

7

C 0ab

7
+257

1

C

A

1/2

. (2.130)

Finally, the colour difference CIE ∆E00 is calculated as follows:

∆E00 =

2
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, (2.131)

where parameters kL , kC , and kH are chosen to best represent the viewing conditions. For general

reference conditions, these parameters are set to be 1 ( kL = kC = kH = 1 ).

We use CIEDE2000 in our work of the characterisation method for HDR imaging in order to

compute perceptual difference values (see Section 3.5.1).

2.3.6 Summary

Colour appearance models are numerically derived from experimental measurements of colour ap-

pearance. Colour appearance occurs in the visual cortex; hence, physiological measurements of

colour appearance is still challenging. Instead, psychophysical measurements have been broadly

used for modelling human colour vision. This is the reason why we still depend on the classical

zone theory [Müller, 1930]. The previous methods to model human colour vision fall into three cat-

egories. One is the psychophysical modelling approach used by CIELAB and LLAB models. They are

derived from psychophysical experimental data so do not try to follow the zone theory. Those models

perform comparatively well (see Chapter 5 for more details on qualitative comparison). However,

these models are quite limited in their representation of the structure and process of human colour

vision. Another approach is physiologically-inspired modelling such as the Hunt94 model. This



2.4. Gamut Mapping 48

approach is strongly based on the zone theory and physiological measurements of primate cone

responses. Even though it is seemingly more rigorous, it is based on an unproven hypothesis and on

physiological response measurements from primates, which may have different characteristics from

humans. Finally, hybrid approaches are an empirical combination of three different approaches:

zone theory, physiological measurements of primates, and psychophysical measurements of the hu-

man,, e.g., CIECAM97s, Fairchild, FC, and CIECAM02. The CIECAM02 model is the latest of the

hybrid types. The main structure is based on the zone theory. The chromatic adaptation is from

psychophysical measurements. The cone responses are modelled from primate measurements. The

colour appearance attributes are modelled from psychophysical measurements again. Our colour

appearance model also takes this hybrid structure after analysis of our experiments (see Chapter 5

for more details).

On the other hand, colour appearance modelling largely depends on the psychophysical ex-

perimental data. However, available data are geared towards luminances under 690 cd/m2, which

is a low luminance level when compared to real-world luminances. This is the reason why cur-

rent colour appearance models fail when predicting colour perception under high luminance levels.

This also limits the application of current colour appearance models for reproduction of HDR im-

ages. Therefore, we built a new experimental environment by using a custom-built high-luminance

display; then, we conducted a series of psychophysical colour experiments under high luminance.

This enabled us to produce a novel colour appearance data set for high luminance levels. Such

wide range of colour appearance data allowed us to build a novel colour appearance model that

can cover the working range of the human visual system (about five-orders magnitude). Finally,

the appearance model is used to complete cross-media colour reproduction in HDR imaging (see

Chapter 4 and 5 for more details on the development of our colour appearance model).

2.4 Gamut Mapping

Device characterisation describes colour device by relating their device-dependent colour specifica-

tion to device-independent coordinates, e.g., CIEXYZ. Such colour spaces commonly try to ensure

that equal scale intervals between stimuli represent approximately equally perceived differences in

the attributes considered. Colour appearance models additionally try to model how the human vi-

sual system perceives colours under different viewing conditions so that the physically-meaningful

coordinates can be transformed into perceptually-uniform coordinates.

In colour reproduction process, a forward device characterisation model of a input device con-

verts device-dependent signals to physically-meaningful coordinates. A forward colour appearance

model then interprets these physical values into perceptual correspondence. These applications

yield perceptually uniform colour coordinates of the real world. Suppose a reverse order of this

colour reproduction process with respect to an output device. An inverse colour appearance model

with a target viewing environment of the output device converts the perceived colour attributes

(through the input device) to physically-meaningful colour coordinates (for the output device).

Successively, inverse device characterisation of an output device changes the physical values into
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output device-dependent signals, completing the chain of the colour reproduction process (see Fig-

ure 2.1). Here colour gamuts of input/output devices can be compared in a perceptual colour space.

We reach a point where we need to consider how to map these two perceptual colour spaces in order

to achieve high fidelity in colour reproduction.

Gamut-mapping algorithms have been broadly researched, and aim to ensure a plausible corre-

spondence of overall colour appearance between the original and the reproduction by compensating

for the mismatch in the size, shape, and location between the original and reproduced gamuts

[MacDonald, 1993; Luo and Morovic, 1996; Stone et al., 1988; Braun and Fairchild, 1999]. See

[Morovic, 2008] for a complete overview of gamut-mapping algorithms. As long as the output

medium is different from the input, it is impossible to physically reproduce the same number of

colours. Gamut-mapping algorithms generally aim for a plausible reproduction of the image’s ap-

pearance rather than the appearance of individual colours in the input image. The gamut-mapping

algorithms generally fall into two high-level categories. The first is gamut clipping algorithms, which

aim to preserve all in-gamut colours in their original locations as far as possible, but clip the rest of

the out-of-gamut colours to maintain high fidelity. For instance, a common gamut clipping method

is to project an out-of-gamut colour towards the light axis along paths of constant lightness and hue

(a) Digital camera

Display
sRGB

Display

Camera

(b) LCD display

(c) Camera and display (d) Display and sRGB

Figure 2.13: Gamut boundary comparison between a digital camera and an LCD display. Image (a)

presents the measured gamut boundary of a digital camera, a Canon 350D in the CIELAB colour space.

Image (b) shows the gamut boundary of an LCD display, an Apple Cinema HD display. Image (c)

presents a comparison of these two different media. Most of the camera gamut is covered by the display

gamut so that most of the captured camera gamut can be represented without any gamut mapping (1:1

direct mapping) except in case of extreme saturation. As shown in Image (d), the gamut size of the

Apple display is almost identical to sRGB international standard gamut.
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in a lightness, chroma, and hue space. These methods are generally used when gamut mismatch is

small, which is true in most cases. The second way is gamut compression algorithms, which make

changes to all colours from the original gamut so as to distribute the differences caused by gamut

mismatch across the entire image. These approaches are used when a larger difference need to be

overcome.

Suppose the input and output gamuts are identical to each other. The input media gamut can

be mapped directly onto the output media gamut. Even when the input device gamut is smaller

than the output one, the input colours can be mapped directly onto the output device colours. In

these two cases, simple 1:1 gamut mapping yields a perceptual match between input stimuli and

output stimuli. However, if the input gamut is bigger than the output gamut, e.g., the reproduction

of a colour transparency film to newspaper, direct mapping leads to gamut clipping of the outside

colours.

Rendering attempts to deal with gamut difference between the original and its reproduction,

and can be divided into four different categories [Hunt, 2004; ICC, 2004]:

• Relative colorimetric: Assuming that the human eye always adapts to the white of the viewed

medium, relative colorimetric intent uses an output medium white point. This means that the

white point of an image is changed to the medium’s white point. It preserves all in-gamut

0.6

0.7

0.5

0.4

0.3

0.2

0.1

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

u'

v'

Spectral locus
sRGB gamut
Real-world gamut

Figure 2.14: Gamut boundary comparison between the real-world gamut and sRGB colour space.

Pointer [1982] measured a maximum gamut for surface colours of the real world from 4089 colour

samples including Munsell Limit Color Cascade. The green outer boundary represents possible gamut

size yields by single monochromatic light within the visible spectrum (380–780nm in wavelength) in CIE

u0v0 diagram, the so-called spectral locus. The red-lined boundary shows the possible gamut boundary

in the real-world viewing environment, which is smaller than the spectral locus as the actual bandwidth

of the spectrum in the real world more spread out than monochromatic lights. Finally, the blue triangle

region represent sRGB colour space. As shown above, most of the gamut boundary of the real world is

covered by the sRGB colour space. Adapted from [Pointer, 1982]
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colours in their original locations, but clips all out-of-gamut colours. It is regarded as a better

choice when the gamuts of the source and the reproduction are similar. This method applies

to most common cases and is defined as a default for ICC profiling [ICC, 2004].

• Absolute colorimetric: Absolute colorimetric intent preserves the original white point in re-

production so that the original white point is maintained on the output medium that may

differ from the original. For instance, this method is broadly used for newspaper and profes-

sional proofing prints.

• Perceptual: Perceptual intent is the default rendering intent in gamut mapping. It preserves

all of the source gamut by compressing through scaling. This method also uses the output

medium’s white point. No clipping of the source gamut happens. It is a reasonable choice for

source images that contains significant out-of-gamut colours.

• Saturation: Without concerning itself with accuracy, saturation intent converts saturated

colours in the source to saturated colours in the destination by expanding the source im-

age’s colour gamut to the output device’s gamut. All colours are changed and the white point

is decided by the output medium.

We measured and characterised a digital camera (Canon 350D) and an LCD display (Apple

Cinema HD Display) with a spectrophotometer (GretagMacbeth EyeOne Pro). These were used

as input and output devices during the work that makes up this thesis. The gamut boundaries of

these two devices are compared in Figure 2.13 and the sRGB colour space is also compared with

the real-world colour gamut (see Figure 2.14). As it turns out, the measured colour gamut of

the digital camera is smaller than that of the display in most regions of the gamut boundary. 1:1

gamut mapping is used for faithful reproduction so that all in-gamut colours in the input medium

are directly mapped (1:1) in their original locations in the output medium (see Chapter 6 for more

details). Our colour appearance model handles the luminance difference of input/output media

(see Chapter 5 for more details). Other gamut mapping techniques are not handled in this thesis.

2.5 High-Dynamic-Range Imaging

The previous sections discussed background and related work of the three essential elements in clas-

sical cross-media colour reproduction. However, this classic system was established and developed

with low-dynamic-range (LDR) imaging fundamentals. It is well known that the LDR imaging sys-

tem has obvious limitation in capturing and representing real-world optical radiation, as mentioned

in Section 1.1.

Current LDR imaging and LDR displays are based on a discretised signal structure, e.g., using

8-bit or 16-bit integer levels, which has obvious limitations. For instance, the camera cannot cap-

ture higher dynamic ranges than 16bits, or the display cannot produce colours of less than 1-bit

signal depth. High-dynamic-range (HDR) imaging [Mann, 1993] and HDR display systems [Seet-

zen et al., 2004] have been developed to overcome these dynamic range limits. Owing to the new

technology, we can capture a much higher dynamic range of luminance, a range similar to human
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vision, and we can display the captured higher dynamic range of data. However, the state of the

art has mainly focused on the extendability of dynamic range from a tone-reproduction point of

view, and has not considered colours rigorously. The work merely extended the dynamic range of

each sensing/display channel on the existing platform. Current colour HDR imaging is achieved by

merely combining the extended multi-chromatic channels, e.g., of red, green, and blue, together as

a colour image.

On the other hand, although we can overcome the dynamic range limit in the capturing stage,

we are facing a reproduction problem at the display stage since HDR displays are not yet avail-

able. As presented in Figure 1.1(b), the range of the captured HDR image exceeds that of common

LDR displays significantly. Gamma correction is not enough to compress the dynamic range of the

captured images. Consequently, HDR images cannot be reproduced by simply rescaling the values

of the HDR images to that of the display. If done nonetheless, most of the interesting informa-

tion in the HDR images is lost by the discretisation of the display signal. Tumblin and Rushmeier

[1993] proposed a non-linear mapping to reproduce HDR images on common LDR displays with

a similar appearance to that observed by the human visual system, so-called tone mapping or tone

reproduction.

Many different HDR image acquisition algorithms and tone-mapping algorithms have been

developed over the years. We will briefly review the common algorithms. In HDR imaging, we

review how to solve a camera exposure function to derive a radiance map from LDR camera signals.

We briefly review the structure of HDR displays. Finally, we review the state-of-the-art tone-mapping

algorithms with respect to colour reproduction and appearance modelling.

2.5.1 High-Dynamic-Range Image Acquisition

Imaging sensors digitise incident illumination into digital signals within a certain range, which is

often limited by the capacity of the solid-state wells and the ADC. State-of-the-art ADCs produce

12- or 14-bit discrete signals as integers. If the dynamic range of illumination exceeds the ADCs’

capacity, the output signal is saturated. To this end, Mann [1993] proposed a novel method to

overcome the dynamic range limit. By taking the exposure time factor into account, the method

concatenates a series of different exposures as a continuum, resulting in an HDR image. Exposure

on the sensor H is the product of irradiance E and exposure time ∆t. Once we have the response

function of a camera f (x) to output camera signal Z for a given exposure H, the inverse application

of the function f −1(x) yields the exposure H. As a result, the summation of the exposure H divided

by the time interval ∆t yields irradiance E at each pixel location (x , y). Supposing the irradiance

on the sensor is linear to the scene radiance [see Equation (2.5)], we can derive relative radiance

measures up to a scalar from the camera signal:

E(x , y) =
N−1
X

j=0

Hj(x , y)

∆t j(x , y)
, where H(x , y) = f −1(Z(x , y)), (2.132)

and j represents the multi-exposure sequence number and N indicates the total number of exposure

sequences.
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HDR radiance maps can be generated from ordinary sensor responses as a solid-state sensor

produces linear responses to incident luminances [Mann and Picard, 1995; Yamada et al., 1995;

Xiao et al., 2002]. These methods employ raw sensor signals by taking into account exposure times.

In practice, digital cameras output non-linear response characteristics given incident light (see Fig-

ure 2.7 for the typical OETF of digital cameras); hence, a camera response function is generally

required to derive exposure levels from given camera signals. As it turns out, this response function

can be directly derived from the camera signals. Many such HDR image acquisition algorithms have

been developed over the years. We will briefly review the common techniques.

Debevec and Malik [1997] introduced a method to generate HDR images from multi-exposed

ordinary photographs (not sensor signals). The key contribution of this method is to estimate a

camera exposure function for a given exposure without requiring extra physical measurements of

the cameras properties. The function is estimated from pixel data with exposure time information

in a curve fitting sense. They assume that the camera response is a smooth and monotonically

increasing function f (x) as a constraint to solve the under-determined function. If ln f −1(x) at

pixel Zi j is defined as g(Zi j), the camera response function can be estimated by minimising the

following error function:

O=
N
X

i=1

P
X

j=1

{w(Zi j)[g(Zi j)− ln Ei− ln∆t j]}2+λ
Zmax−1
X

z=Zmin+1

[w(z)g 00(z)]2, (2.133)

where N is a number of pixel locations, P is a number of exposure sequences, Z is a pixel response,

∆t j is a relative exposure time, λ is the weighting constant, g 00(z) is the second derivative of the

function g(Zi j), and w(z) is a pyramid weighting factor:

w(z) =

8

<

:

z− Zmin , z  1
2
(Zmin+ Zmax)

Zmax−z , z > 1
2
(Zmin+ Zmax)

. (2.134)

In Equation (2.133), the first term is for concatenating the camera responses in different exposures;

the second term is a smoothness term at each joint point of the LDR responses; the λ is empirically

determined.

Once the inverse logarithmic camera response function g(z) is recovered, the radiance values

of each pixel in different exposure sequences are accumulated with a pyramid-weighting factor [see

Equation (2.134)]; consequently, it yields a relative HDR radiance value (up to a scalar) at each

pixel Ei:

ln Ei =

P
P

j=1
w(Zi j)(g(Zi j)− ln(∆t j))

P
P

j=1
w(Zi j)

. (2.135)

The main impact of their method is to allow greater access to HDR imaging so that any dig-

ital camera can be used to build HDR images without requiring any specific hardware such as a
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spectroradiometer. However, their estimation approach may produce noise depending on the sam-

pleddata. Even though the parameter λ is helpful for stabilising performance, it may result in the

loss of important information when estimating the camera exposure function.

Mitsunaga and Nayar [1999] model the camera exposure function as a high-order polynomial

function, while Debevec and Malik [1997] and Robertson et al. [1999, 2003] solve the camera

function without assuming a polynomial function. The camera exposure function f (x) of pixel

value Z is modelled as a polynomial function:

f (Z) =
N
X

n=0

cnZn. (2.136)

The exposure function is solved by minimising the below error function ":

"=
Q−1
X

q=1

P
X

p=1

2

4

N
X

n=0

cnZn
p,q−Rq,q+1

N
X

n=0

cnZn
p,q+1

3

5

2

, (2.137)

where Q is a total number of images used, N is a polynomial degree, and P represents each pixel

location. cn is the coefficient to the polynomial. The optimisation can be solved by determining

where the partial derivatives are all zero with respect to the polynomial coefficients @ "/@ cn = 0.

The equation is solved iteratively until the minimum error reaches a certain level. They also

constrain the maximum order of the polynomial degree up to the tenth order. Once the camera

response function is recovered, the radiances in different exposures (scaled by the time intervals) at

each pixel are accumulated as in [Debevec and Malik, 1997] [see Equation (2.135)].

While the assembly algorithm of [Debevec and Malik, 1997] requires the complete informa-

tion of a series of exposure time intervals, Mitsunaga and Nayar [1999]’s algorithm needs only

the first exposure time interval and computes the other time intervals. However, considering that

the LDR source images are usually taken in identical exposure intervals, it is not a big benefit in

practice. Nonetheless, [Mitsunaga and Nayar, 1999] is computationally more efficient and robust

than [Debevec and Malik, 1997] such that the camera response function is smoothly increasing and

monotonic.

Nayar and Mitsunaga [2000] introduced the application of one-shot HDR imaging, so-called

spatially varying exposure (SVE) imaging, by placing a set of mosaic neutral density filters in front of

the sensor. This avoids the registration problem of the previous multi-exposure HDR imaging, e.g.,

[Debevec and Malik, 1997]. In their hardware, four neighboring pixels have different exposures

respectively, and this pattern is repeated over the detector array. It is an innovative approach to

produce HDR images without taking multi-exposure sequences that enables the capture of moving

objects as HDR video.

Göesele et al. [2001] solves the exposure function by using the ICC profile, which converts

device-dependent signals (non-linear RGB) into device-independent signals, so-called profile-connect

space (PCS), e.g., CIEXYZ coordinates — colour space adapted in the D50 illuminant [ICC, 2004].

Then the exposure sequence xi, j , yi, j , and zi, j , scaled by the time interval Tj , are averaged with
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Figure 2.15: Mosaic neutral-density filter for spatial varying exposure imaging. Four different expo-

sures of neutral density filter are installed in front of the detector array. The difference between neutral

density is e3 = 4e2 = 16e1 = 64e0. Adapted from Nayar and Mitsunaga [2000].

weighing factor w:

Xi = Tn

P

j
X i, j T

−1
j w(Xi, j ,Yi, j , Zi, j)

P

j
w(Xi, j ,Yi, j , Zi, j)

,

Yi = Tn

P

j
Yi, j T

−1
j w(Xi, j ,Yi, j , Zi, j)

P

j
w(Xi, j ,Yi, j , Zi, j)

, (2.138)

Zi = Tn

P

j
Zi, j T

−1
j w(Xi, j ,Yi, j , Zi, j)

P

j
w(Xi, j ,Yi, j , Zi, j)

.

After that, the HDR XYZ image is transformed into the display signals through an output ICC profile,

which converts the device-independent signals (CIEXYZ) into device-dependent signals (non-linear

display RGB).

This approach is a method to utilise HDR images in the colour management workflow, which

can produce better colour reproduction across its pipeline. However, this method inherits drawbacks

from the ICC profile mechanism. The proposed method needs to measure the white point of the

captured scene to achieve colour consistency; otherwise it needs to capture the reference target in

every capture as the ICC input profile is specific only to a certain illumination condition (where

it was generated). In practice, this aspect limits their application for capturing HDR images. The

method also does not include a tone-mapping algorithm to reproduce images. It merely applies

gamma correction, which is built in the ICC profile mechanism.

HDR Image Formats Captured HDR radiance is usually represented as floating-point data. Any im-

age format that supports floating-point data can be used for storage of the HDR images, e.g., RGBE

format [Ward, 1992], OpenEXR [Lucas Digital Ltd., 2006], or Portable Float Map (PFM) [IEEE,

1985].

The RGBE file format has been distributed as a part of the freely available application Radi-

ance [Ward, 1992]. It is broadly used in HDR and graphics applications. It has four channels:



2.5. High-Dynamic-Range Imaging 56

Projector

PC

LCD panelFresnel lens and diffuser

LCD controller

PC with a dual-VGA graphic card

Figure 2.16: Design of a high-dynamic-range display. In the general structure of the LCD display, a

DLP projector or LED panel is substituted for the fluorescent back-light unit. Consequently, the HDR

display can produce higher contrast resolution than the ordinary display does and higher luminance

levels. Adapted from [Seetzen et al., 2004].

three mantissas for red, green, and blue, and one exponent that is shared by these three colour

channels; therefore, each colour value comprises two bytes of a mantissa and a shared exponent

(half-precision float). The memory size for a pixel is 32 bits (4 bytes). However, it cannot cover

the whole visible colour gamut, and colour saturation may occur as the three mantissa channels

share one exponent. For example, if there is a colour which has large variation of colourfulness, the

colour information will be clamped when it is encoded. The other drawback is that the number of

mantissa bits (8bits) is rather smaller; hence, the RGBE format has limited precision.

Lucas Digital Ltd. [2006] introduced open-source file input/output interface, called OpenEXR.

This format is a general purpose wrapper for 16bits half-precision float type. It comprises a sign

bit for the exponent, five bits for the exponents, and ten bits for the mantissa. It further supports

wavelet compression. The memory size for a pixel is 48 bits (6 bytes). However, considering that

most of HDR applications use single or double precision float internally, it loses tone precision of

when restoring image data. In addition, the maximum value that can be stored is limited to 65504.0.

The PFM file format stores single precision data directly without loss (IEEE storage format for

the 32bits (4bytes) single precision float type [IEEE, 1985]). It comprises a sign bit for the exponent,

8bits for the exponent, and 23bits for the mantissa per each pixel in the interleaved mode. The total

memory size for a pixel is 96bits (12bytes). The precision is high, but the file size is larger when

compared to other HDR formats.

2.5.2 High-Dynamic-Range Display

Seetzen et al. [2004] introduced an HDR display system, which was created by substituting a digital

light processing (DLP) projector for the fluorescent back-light unit of an ordinary LCD display. As a

result, the display can display images with a higher dynamic range and a contrast ratio of 1:50 000

as the backlight is now spatially varying. Depending on the exact configuration, the maximum
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luminance goes up to 2 700 cd/m2. As shown in Figure 2.16, the projector-based HDR display

requires 100cm in depth, which is a drawback. Hence, they developed another type with light-

emitting diode (LED)-based back-light modulator. The LED-based model has a low-resolution back

light behind the diffuser of the LCD panel. It has a higher maximum output luminance of up to

8 500 cd/m2. The LEDs are powered individually to form a low-frequency luminance map behind

the displayed image. Thus the HDR display makes dark regions appear darker and in higher contrast

than a uniform back-light modulation.

In order to build a controllable viewing environment of our psychophysical experiment un-

der high luminance levels, we built a high-luminance display. Our display substitutes hydrargyrum

medium-arc iodide (HMI) bulbs for the florescent back-light unit of an LCD display so that its max-

imum luminance increases to 16 860 cd/m2 (see Chapter 4 for more details on our high-luminance

display).

2.5.3 Tone Reproduction in High-Dynamic-Range Imaging

HDR imaging has been introduced to record real-world radiance values, which can have a much

higher range than that of ordinary imaging devices. HDR radiance maps can have a dynamic range

of about nine to ten orders of magnitude. Photographic HDR images or artificial radiance maps

cannot be displayed properly on low-dynamic-range (LDR) output devices (with about two orders

of magnitude) due to the huge difference in dynamic range (see Figure 1.1). Consequently, the

dynamic range of the HDR scene needs to be mapped into the range of an output device, which is

called tone reproduction or tone mapping.

Tone Mapping Tone mapping is related to colour appearance modelling and cross-media colour

reproduction as it tries to preserve the perception of an image after remapping to a low-luminance

display; however, generally only tone (and not colourfulness) is considered. Over the years, many

different tone reproduction operators have been developed since [Miller and Hoffman, 1984]. The

majority of research has focused on improving local contrast, pursuing fewer artifacts and more effi-

cient computation times [Schlick, 1994; Rahman et al., 1996; Ferwerda et al., 1996; Pattanaik et al.,

1998; Tumblin and Turk, 1999; Pattanaik et al., 2000; Funt et al., 2000; Fattal et al., 2002; Rein-

hard et al., 2002; Durand and Dorsey, 2002; Johnson and Fairchild, 2003; Meylan and Süsstrunk,

2004; Li et al., 2005]. Global operators have received less attention [Tumblin and Rushmeier, 1993;

Ward, 1994; Ward et al., 1997; Drago et al., 2003; Reinhard and Devlin, 2005] since high contrast

appearance is difficult to achieve, but on the plus side they do not suffer from halo-artifacts like

many local operators and are much more efficient.

Among the previous tone-mapping algorithms, we will briefly review the relevant techniques

(see [Reinhard et al., 2005] for a complete overview of other tone-mapping algorithms). This

section also contains detailed mathematics of the methods. They are included here as a reference,

and the reader is welcome to continue to Section 2.5.4 for a general summary of HDR imaging.

First, we will briefly review the global operators.
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Global Operators Tumblin and Rushmeier [1991, 1993] were pioneers in addressing the research

question of how to render computer-generated HDR images. Their approach is to manipulate the

tone-reproduction curves of HDR images by utilising the brightness perception model by [Stevens

and Stevens, 1963]. It originates from scientific insights of the colour reproduction mechanism in

humans with respect to tone mapping. Their tone-reproduction operator comprises three elements:

a real-world observer function, an inverse display observer function, and an inverse display device

function so that the perceived brightness on the display Bd matches that of the original scene Brw

(See Figure 2.17).

In particular, their insight into the HDR reproduction pipeline influenced our approach. They

are only concerned with luminance mapping and derive their formulae from previous psychophysi-

cal assumptions, whereas we conducted psychophysical experiments to measure colour appearance

attributes and modelled them for use in the reproduction pipeline (see Chapter 6 for more details

on our method).

Ward [1994] introduced a simple tone-mapping operator, which controls the contrast of HDR

images with respect to the threshold in the human visual system to a given luminance intensity.

The simplest way to achieve tone-mapping is to scale the captured real-world luminance Lw at pixel

(x,y) to the range of a display luminance Ld with an appropriate scalar m:

Ld(x , y) =m · Lw(x , y) . (2.139)

Considering the non-linear responsivity of the human visual system to given luminance, a threshold-

versus-intensity function t (a human observation function, corresponding to the forward colour

appearance model) is used:

t[Ld(x , y)] =m · t[Lw(x , y)] , (2.140)

where m is derived by solving t[Ld(x , y)]/t[Lw(x , y)], based on [CIE, 1981]. Finally, the tone-
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Figure 2.17: Schematic diagram for tone reproduction operators, adapted from [Tumblin and Rush-

meier, 1993]. Their proposed tone-reproduction operator comprises real-world observations, inverse

display observations, and an inverse display device function that achieves a perceptual match between

real-world observation and the observation of the reproduced image on the display.
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mapping function m is modelled as:

m=
1

Ld,max

0

B

B

@

1.219+
⇣

Ld,max

2

⌘0.4

1.19+ L0.4
wa

1

C

C

A

2.5

, (2.141)

where Ld,max is the maximum display luminance assumed in the range 30–100 cd/m2; the level

of real-world luminance adaptation Lwa is estimated as the log average of the image’s luminance

levels:

Lwa = exp

 

1

N

X

x ,y
log(10−8+ Lw(x , y))

!

. (2.142)

This method and [Tumblin and Rushmeier, 1993] form fundamentals for later tone-mapping

algorithms. While Tumblin and Rushmeier [1993] suggest a fundamental pipeline for tone-mapping

algorithms, Ward [1994] suggests a more practical idea to achieve tone mapping with respect to

the human visual system. In particular, Equation (2.142) is adopted in many other tone-mapping

algorithms for estimating the real-world luminance adaptation in HDR images [Pattanaik et al.,

1998; Reinhard et al., 2002]. Equation (2.141) is extended further by Ferwerda et al. [1996] based

on real measurements of the luminance response of the human visual system.

Ward et al. [1997] suggested a global adaptation approach, which is based on histogram equal-

isation; furthermore, it models the subjective perception of the scene by borrowing the perceptual

measurements of the contrast threshold. Their histogram equalisation decreases the contrast of less

populated luminances and increase the contrast of more populated luminances respectively. This

method first computes a histogram and cumulative distribution function from the logarithmic values

of luminance, which is only used for obtaining a distribution. However, they found that the naive

histogram equalisation method exaggerates contrast; hence, they imposes an upper bound onto the

slope of the cumulative histogram remapping curve. But this changes the total pixel count in the

histogram, which also affects the upper bound. They conduct histogram adjustments iteratively to a

certain tolerance level. The level is decided in an empirical manner. The histogram is taken between

the minimum and maximum values in equalised bins in the logarithmic scale of luminance (100 bins

are used). The histogram equalisation function Bde is applied in pixel values between log(Ldmin)

and log(Ldmax ). The function Bde follows:

Bde = log(Ld min)+[log(Ld max)− log(Ld min)]cd f (Bw) , (2.143)

where Bde is the computed display brightness log(Ld), Ldmin is the minimum of the display lumi-

nance (black level) [cd/m2], Ldmax is the maximum of the display luminance (white level) [cd/m2],

Bw is the world brightness log(Lw), and cd f () is the cumulative distribution function.

Their method also considers the limitations of human vision: glare, colour sensitivity, and visual

acuity. It includes functions to simulate glare that is caused by bright sources in the visual periphery

and which scatter light into the lens of the eye; furthermore, it includes a term to simulate colour

sensitivity which is reduced in dark environments as the light-sensitive rods take over from the
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colour-sensitive cone system. The proposed method is able to compress HDR images very effectively

and also provides relatively stable colourfulness in the results. The details in the shadow area are

very well preserved. However, the physical relationship between the display signal and the HDR

radiance map is changed considerably.

Drago et al. [2003] introduced a global tone-mapping model which is based on logarithmic

compression following the hypothesis by Fechner [1963] (see Section 2.3.2 for more details). They

manipulate the base of the logarithm to adjust the contrast of images. The method originates from

Fechner’s Law:

B= k1 ln
✓

L

L0

◆

, (2.144)

where L0 denotes the luminance of the background and k1 is a constant factor. The proposed

logarithmic compression is structured to compute display luminance Ld through dividing real-world

luminance LW by the maximum luminance in the scene Lmax :

Ld =
log(Lw+1)

log(Lmax+1)
. (2.145)

However, this simple logarithmic compression is not enough to handle various HDR radiance maps,

hence the base of the logarithm is varied from two to ten with appropriate interpolation. This is

computed by Perlin and Hoffert’s bias power function [Perlin and Hoffert, 1989]. The bias function

is a power function defined over the unit interval where an intuitive parameter b remaps an input

value to a higher or lower value (0.85 is used for b):

biasb(t) = t
log(b)

log(0.5) , (2.146)

where t is the relative intensity of luminance. Finally, the bias function of Equation (2.146) is

merged with the compression function of Equation (2.145) to vary the base of logarithm to differing

contrast:

Ld =
Ldmax ·0.01

log10(Lwmax +1)
· log(Lw+1)

log

Ç

2+

Ç

⇣

Lw
Lwmax

⌘

log(b)
log(0.5)

å

·8
å

. (2.147)

The first factor in Equation (2.147) is the adaptation scale factor, which is derived from the denom-

inator of Equation (2.145). It is the ratio of the maximum luminance of the display (assumed to

be 100cd/m2) to the logarithm of the maximum world luminance. The denominator of the second

factor in Equation (2.147) is the base of the logarithm, which is the interpolated ratio of world

luminance to maximum world luminance from two to ten by using the bias function (b = 0.85).

After that, the compressed luminance values are gamma-corrected to fit the display gamma (ITU-R

BT.709):

E0 =

8

<

:

slope · L , L  star t

1.099L
0.9
γ −0.099 , L > star t

, (2.148)
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where slope is the elevation ratio (slope=4.5) of the line passing by the origin and tangent to

the curve, star t is the abscissa (star t=0.018) at the point of tangency, and γ is 2.2. The pro-

posed method provides not only computational efficiency but also relatively plausible reproduction.

However, the performance of this method is affected by the default parameter settings and image

characteristics. Some images are overly bright or dark while others look fine.

Reinhard and Devlin [2005] introduced an efficient global method, inspired by the physiolog-

ical response of photoreceptors (cones), based on [Kleinschmidt and Dowling, 1975; Hood et al.,

1979]. The photoreceptor response V according to intensity I is defined similarly to the Michaelis-

Menten equation [Valeton and van Norren, 1983] [see Equation (2.11)]:

V =
I

I+(Ia)m
Vmax , (2.149)

where the exponent m is 0.3+0.7k1.4, k is (Lmax− Lav)/(Lmax− Lmin), Lav is the geometric mean of

the luminance, and the adapted pixel intensity Ia is computed through interpolation of local (pixel

intensity itself) and global (geometric mean of luminance) adaptation as follow:

Ia = a I local
a +(1−a)I global

a , (2.150)

where a is 0.5 (which means the arithmetic mean of the geometric mean of luminance and pixel

value), I local
a = L , I global

a = I av
r/g/b , where L is the luminance level of each pixel, and I av

r/g/b is the

exponent of Lav [Reinhard et al., 2005]. Finally the pixel value Vr/g/b is gamma-corrected by 2.0

[Reinhard et al., 2005]:

V 0r/g/b = V 1/2.0
r/g/b . (2.151)

The proposed algorithm takes a similar strategy to the global adaptation part of [Reinhard

et al., 2002]. Both methods describe the modified version of the Michaelis-Menten hyperbolic equa-

tion. However, the global operator of [Reinhard et al., 2002] produces more stable and plausible

results than this proposed method [Reinhard and Devlin, 2005] (see Chapter 6 for a more detailed

comparison). Furthermore, like [Drago et al., 2003], the performance of the proposed method is

affected by the default parameter settings and image characteristics. For instance, some images

appear overly bright or dark with the default parameter settings (see Chapter 6 for more details on

comparison).

Kim and Kautz [2008b] introduced a global tone reproduction operator which provides consis-

tent tone reproduction. This method was tested with a large variety of HDR images and produced

consistent results without adjusting parameters.

Their method is inspired by the characteristic curve in photography, called DlogE plot [Hunt,

2004], which plots density (logarithm of reflective luminance) against logarithm of the luminance

incident on the photographic material.

For instance, the Stanford Church HDR image [Debevec and Malik, 1997] (see Figure 6.5) has

a dynamic range (luminance) of 5.5 orders of magnitude (1:343 512). Imagine that the radiance
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map is observed on a display which has a dynamic range of 2.4 orders of magnitude (1:256, 8-

bits [Berns and Katoh, 2002]). By linearly scaling the HDR radiance map to the range of display

luminance in the DlogE domain (scaled by approximately 0.43), the dynamic range of the HDR

radiance map is adjusted to that of the display luminance. The dynamic range of these two is then

identical. The scaling factor k1 is computed as follows:

k1 =
log Ldmax

− log Ldmin

log Lsmax
− log Lsmin

, (2.152)

where log Ldmax
and log Ldmin

are the maximum and minimum luminances of the display signals and

log Lsmax
and log Lsmin

are the maximum and minimum luminances of the HDR radiance map. The

dynamic-range compressed image can be computed as:

L1
�

x , y
�

= exp
�

k1 log L0
�

x , y
��

, (2.153)

where L1 is the compressed luminance at pixel address (x , y) and L0 is the luminance of the HDR

image at each pixel.

When a linear scaling factor is applied, the slope of the tone reproduction line decreases in the

DlogE domain. The rotating point in changing the slope is moved to the averaged log-luminance

µ by subtracting the mean µ before scaling, and then adding it back in the DlogE domain. The

linear scaling factor is then replaced with a non-linear function. A Gaussian-weighting of the scale

factor k1 is performed such that it has a peak at the averaged log-luminance µ and a minimum at

k1 (see Figure 2.18). This new Gaussian-weighted scale factor k2(L) depends on the log-luminance

L = log L0(x , y) and has a range of k1  k2(L) 1.0. This non-linear scale factor is computed as:

k2(L) =
�

1−k1
�

w (L)+k1, (2.154)

w(x) = exp

 

−1

2

�

x−µ�2

σ2

!

, σ=
d0

c1
, (2.155)

where σ is the ratio of the dynamic range d0 of the log-luminances of the HDR image to the user-

parameter c1. This adjusts the shape of Gaussian fall-off within the width of its characteristic curve.

The parameter c1 influences the resulting brightness and local details of the tone-mapped image.

They found that c1 ⇡ 3.0 is the maximum level that can compress contrast without losing detail in

the bright areas of images.

The final non-linear mapping function is as follows (including the rotation around µ):

L1
�

x , y
�

= exp
⇥

c2k2
�

log L0
�

x , y
�−µ�+µ⇤ . (2.156)

Parameter c2 is also introduced, referred to as the efficiency factor, which scales the intensity of

the non-linear weighting. Even though the display signal depth may have a dynamic range of 2.4

(1:256), the actual dynamic range of the display luminance is often lower than that of the signal

(e.g., an Apple Cinema HD Display has a measured dynamic range of only 2.01). Therefore, the

dynamic range of an HDR radiance map should be compressed more than that of the display signal

depth. Parameter c2 is 0.84 ( = 2.01/2.4) for this specific display. However, based on the testing of
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Figure 2.18: Range of the dynamic scale factor k2.

other displays with lower dynamic ranges, the c2 parameter should be set to lower than the above

for general purpose. Setting c2 ⇡ 0.5 works for a wide variety of images and displays.

The Y coordinate of CIEXYZ is used as the luminance input value L0 for the proposed tone

reproduction operator. After obtaining the mapped luminance layer L1, the X and Z channels are

scaled by the ratio of mapped luminance to original luminance as [Schlick, 1994]. After obtain-

ing the tone-mapped radiance map, they use the international specification for the sRGB colour

space [IEC, 2003] to map the LDR radiance map onto the display colour space (CIEXYZ values are

transformed into sRGB signals through the inverse transform matrix and gamma correction, cor-

responding to γ= 2.2 including a linear ramp for dark values [IEC, 2003]). In order to optimise

the dynamic range of the display, a histogram is computed of the tone-mapped image and used to

stretch the pixel levels between 1% and 99% of the range of display signals (effectively clamping

values below 1% and above 99% and re-normalising to the 0%-100% range).

Global tone-mapping algorithms often produces inconsistent reproduction results for the same

default parameter set — some images are overly bright or dark while others look fine. It is beneficial

for tone reproduction operators not to require any per-image parameter tweaking. Their proposed

method shows consistent results across the set of images (photographic and computer-generated)

without any need for parameter tweaking. However, this model is developed with theoretical as-

sumptions in an empirical manner, without taking into account colour reproduction.

Local Operators Chiu et al. [1993] introduced the pioneering concept of local adaptation for HDR

tone-mapping. As the human visual system has different sensitivities to different spatial frequencies,

the contrast of the pixel intensity f at pixel location (i, j) is controlled with a low-pass filter S(i, j)

in order to simulate the change of frequency sensitivity:

f̂ (i, j) = Ŝ(i, j) f (i, j). (2.157)

The contrast scaling function S(i, j) is modelled as follows:

Ŝ(i, j) =

8

<

:

S(i, j),
1

f (i, j) ,

S(i, j)< 1
f (i, j)

S(i, j)≥ 1
f (i, j)

, where S(i, j) = 1
k fblur (i, j)

, 0 S(i, j) 1
f (i, j) , (2.158)

and Ŝ(i, j) is proportional to the reciprocal of a filtered (blurred) function fblur ; S(i, j) has the value
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between 0 and 1
f (i, j) , which accents dark areas and dims bright areas. fblur is generated by a low-

pass filtering through the Perlin and Hoffert interpolation [Perlin and Hoffert, 1989] between two

intensities at two local points c0 and c1 as c = (−2t3+3t2)c0+(2t3−3t2+1)c1, where t varies

from zero to one between c0 and c1. Although the spatially-varying adaptation of luminance was

a pioneering idea to overcome the difference of dynamic range, their results yield artifacts such as

halos (see Figure 2.19 for more details).

Tumblin and Turk [1999] introduced the concept of diffusion imaging, which involves gradient

mapping using a partial differential equation solver. The common local adaptation methods convert

HDR images into the frequency domain and scale down only the low bandwidth channel. These

methods compress the low frequency luminance selectively into the display’s range with the same

details as the original. However, this yields typical artifacts, called halos [see Figure 2.19(a)].

On the contrary, they introduced a method to control the gains of pixel intensities in the gradient

domain instead of the frequency domain. In order to detect the edge, the method uses the diffusion

theory [Perona and Malik, 1990] with an assumption that the image intensity is the temperature of

a large flat plate of uniform thin material. This method scales down the higher gain selectively in

the gradient domain so that such halo artefact is not included in output images [see Figure 2.19(b)].

Fattal et al. [2002] extended the gradient approach of [Tumblin and Turk, 1999] and improved

computational efficiency. This method calculates the gradient of logarithm of luminance, following

the approximation of human perception by [Fechner, 1963]. The computed gradients are com-

pressed in a multi-scale pyramid. The compressed gradients are then converted back to intensities

(a)

Halo

Halo

Bandpass

decomposition

(in frequency)

Weighted sum

result

HDR Input

(b)

Gradient

decomposition

Weighted sum

result

HDR Input

Figure 2.19: Comparison between frequency and gradient decomposition in tone mapping. Image (a)

presents three stages of tone mapping in the frequency domain. On the left, an HDR image has very high

contrast ratio with details. In the middle, the image is decomposed into different bandwidth channels,

and the lower bandwidth is selectively scaled down for tone mapping. The result on the right presents

halo artifacts as the higher bandwidth is spatially associated with the lower bandwidth. Image (b)

presents three stages of tone mapping in the gradient domain. The HDR input on the left is decomposed

into different level of gradient. The high gradient is selectively scaled down so that this method reduces

any halo-like artifacts. Adapted from [Tumblin and Turk, 1999].
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via the Poisson equation. This method is faster than [Tumblin and Turk, 1999], but it often produces

halo artefacts around high frequency regions as this method compresses not the gradient of pixel

intensity, but the gradient of logarithmic luminance.

Durand and Dorsey [2002] proposed an HDR tone-mapping operator based on bilateral filter-

ing [Tomasi and Manduchi, 1998]. The main idea of bilateral filtering is that not only a spatial

Gaussian filter f (p−s) is applied, but is weighted by an intensity Gaussian filters g(Ip− Is) between

two points p and s, which scales signal intensity of the corresponding pixels Ip within an image ⌦.

As a result, the filter detects edges Js at each pixel s while smoothing high frequency details:

Js =
1

k(s)

X

p2⌦
f (p− s) g(Ip− Is) Ip . (2.159)

where k(s) is a normalisation term: k(s) =
P

p2⌦
f (p− s) g(Ip− Is). Hence, a pixel closer to s and

more similar to s in intensity will be weighted more greatly to detect edges. The method then

is accelerated by a piecewise-linear approximation in the intensity domain and appropriate sub-

sampling through the fast Fourier transform to improve the computational cost over the original

bilateral filter. Finally, this filter is used to decompose an image into a base layer (obtained from the

bilateral filter) and a detail layer. Only the base layer is compressed and the detail layer is added

back in. Even though the method was developed empirically, according to [Kuang et al., 2004],

its tone-mapping results are as plausible as [Reinhard et al., 2002]. It was adopted into an image

appearance model by Kuang et al. [2007], called iCAM06, to mimic the spatially-varying adaptation

of the human vision system.

Reinhard et al. [2002] presented a mixed approach of the global and local operators, which

produces consistent and plausible results. It has been used broadly in graphics applications. For the

local operation, they employed low-pass filtering through the Fast Fourier Transform. The global op-

eration starts from calculating luminances from pixel values. Then, an adapting level of luminance

Lw is calculated, which is similar in a sense to the geometric mean of the luminance:

Lw = exp

0

B

B

B

@

P

x ,y
log(δ+ Lw(x , y))

N

1

C

C

C

A

, (2.160)

where δ is 0.0001 to avoid infinite error. The estimated average of luminance produces a normali-

sation of the scene luminances with key values (representing 18% neutral grey):

L(x , y) =
a

Lw
Lw(x , y) , (2.161)

where L(x , y) is a scaled luminance, and a is a user parameter, 0.18 (as default). Finally, the global

adaptation is defined in a form:

Ld(x , y) =
L(x , y)

1+ L(x , y)
·
 

1+
L
�

x , y
�

�

Lwhite
�2

!

, (2.162)

where Ld(x , y) is a global tone mapped image, and Lwhite is the maximum luminance of L(x , y)

(limited to 1⇥1020).
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After that, the photographic local adaptation function is appended as a Gaussian convolution.

The convoluted profile Ri of each scale s at each pixel (x , y) is defined:

Ri(x , y,s) =
1

⇡(↵i s)2

 

− x2+ y2

�

↵i s
�2

!

. (2.163)

The computed profile Ri of each scale s is convoluted with the luminance value L: Vi(x , y,s) =

L(x , y)⌦Ri(x , y,s). Then the centre convolution V1 and surround convolution V2 are merged to a

layer of each scale:

V (x , y,s) =
V1(x , y,s)−V2(x , y,s)

2φa/s2+V1(x , y,s)
, (2.164)

where φ is a sharpening parameter, 8.0. Finally, Equation (2.162) and (2.164) are combined as

follows:

Ld(x , y) =
L(x , y)

1+V1(x , y,sm(x , y))
, (2.165)

where V1(x , y,sm(x , y)) is the blurred luminance level when sm(x , y) satisfies |V (x , y,sm)|< " (a

threshold).

The resulting quality is more consistent compared to other approaches. According to [Kuang

et al., 2004], its tone-mapping results are psychophysically rated to be as highly plausible as [Du-

rand and Dorsey, 2002]. The performance of this method is presented in Chapter 6 with comparison

to our reproduction model.

Colour in Tone Mapping Commonly, tone-mapping algorithms only modify lightness while keep-

ing the colour channels untouched. The Schlick [1994] tone-mapping method was the first to

take colour into account in HDR tone mapping. He concentrated on preserving the ratio of colour

primaries. Instead of scaling all three colour channels with a non-linear function, the luminance

information L (corresponding to the Y channel in CIEXYZ colour space) is derived from the orig-

inal image. The contrast response function takes the luminance level L to yield the tone-mapped

luminance L0. Finally, the ratio of L0 to L is used to compress the luminance without altering the

physical colour property of each pixel in the source image:

C 0r/g/b =
L0

L
·Cr/g/b , (2.166)

where C 0r/g/b is the tone-mapped primaries, and Cr/g/b is the original colour primary value. This

colour reproduction method is used by many other tone-mapping algorithms [Reinhard et al., 2002;

Reinhard and Devlin, 2005; Kim and Kautz, 2008b].

However, this may lead to perceptually flawed colour reproduction (either washed-out colours

or over saturation), as has been shown in [Tumblin and Turk, 1999; Mantiuk et al., 2009]. Tumblin

and Turk [1999] experienced washed-out colours after applying their tone-mapping operator and

suggested a luminance preserving correction method:

C 0r/g/b =
✓Cr/g/b

L

◆s

· L0, (2.167)
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where s is a saturation factor, which was suggested to control the saturation of tone-mapped images.

Mantiuk et al. [2009] also demonstrate how to improve colour reproduction after contrast

compression and enhancement. They conducted a series of subjective appearance matching exper-

iments to measure the change. Even though they did not provide a full colour appearance model,

they proposed colour correction formulae for current tone-mapping algorithms.

In addition to [Tumblin and Turk, 1999], Mantiuk et al. [2009] suggests a non-linear colour

correction formula:

C 0r/g/b =
✓✓Cr/g/b

L
−1
◆

s+1
◆

L0. (2.168)

The saturation parameter s is estimated with respect to a given luminance-specific tone-curve (de-

pending on a contrast compression factor c). The tone curve is defined in a simplified form:

L0 = (L · b)c , (2.169)

where b is the brightness adjustment. Finally, Mantiuk et al. [2009] define the relationship between

contrast c and saturation s as follows:

s(c) =

�

1+k1
�

ck2

1+k1ck2
, (2.170)

where the parameters k1 and k2 are derived from their experimental data by a least-squares fit. The

best fit for non-linear colour correction is k1=1.6774 and k2=0.9925 in Equation (2.168); the best

fit for luminance preserving correction is k1=2.3892 and k2=0.8552 in Equation (2.167).

Mantiuk et al. [2009]’s method provides a practical solution for compensating colour repro-

duction with respect to tone-mapping algorithms. However, their non-linear colour correction for-

mulae strongly distorts lightness, and while the hue is less distorted than the luminance when using

the preserving formula. In addition, they also observed that an existing colour appearance model

(CIECAM02) cannot explain the relationship between perceived brightness and colourfulness.

Image Appearance Advanced models exist that try to combine colour appearance models with

spatial vision. Ferwerda et al. [1996] proposed a computational model of human vision that in-

cludes spatial adaptation. It was mainly based on previous psychophysical threshold experiments.

It includes a threshold detection experiment that quantifies the perceptual threshold of luminance

up to 10 000 cd/m2. The experiment does not measure the suprathreshold appearance of lumi-

nance (e.g., magnitude experiments as in LUTCHI), but instead the threshold level of luminance.

In contrast, we conducted suprathreshold measurements of perceived colour attributes (not only

luminance) up to 16 860 cd/m2of luminance (see Chapter 4 for more details on our experiments).

Adopting Ward [1994]’s tone-mapping concept, Ferwerda et al. [1996] assume that the display lu-

minance level Ld is achievable by scaling real-world luminance Lw with an appropriate scalar m:

Ld(Lw)=mLw . Ward [1994] defines a function to define the scalar m, which depends on real-world

adaptation luminance Lwa and display adaptation luminance Lda as follows:

m
�

Lwa, Lda
�

= t
�

Lda
�

/t
�

Lwa
�

. (2.171)
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Ferwerda et al. [1996] replace the threshold function t with their threshold function, derived from

their psychophysical measurements. Like the Hunt94 colour appearance model (see Section 2.3),

they modelled the threshold function t on three different vision categories. First, the threshold

function for photopic vision (cone only) tp(La) is modelled as follows:

log tp(La) =

8

>

<

>

:

−0.72 ,

log La−1.255 ,

(0.249log La+0.65)2.7−0.72 ,

log La −2.6

log La ≥ 1.9

−2.6< log La < 1.9

, (2.172)

where La is luminance [cd/m2]. The function for scotopic vision (rod only) ts(La) is:

log ts(La) =

8

>

<

>

:

−2.86 ,

log La−0.395 ,

(0.405log La+1.6)2.18−2.86 ,

log La −3.94

log La ≥−1.44

−3.94< log La < 1.44

. (2.173)

For mesopic vision (scotopic plus photopic vision) Ld , these two responses, photopic Ldp and sco-

topic Lds, are summed with a scaling constant k :

Ld = Ldp+k(La)Lds , (2.174)

where k is a constant from 0 to 1 replacing the adaptation level. Finally, they employed a Gaussian

convolution filter with respect to spatially-varying local adaptation as shown in [Reinhard et al.,

2002]. The filter cuts off high frequency (high contrast) of luminance to match the observer’s

contrast threshold:

f ⇤
�

wc
�

Lwa
��

=
t
�

Lwa
�

Lwa
, (2.175)

where f ⇤ is the Fourier transform of the convolution filter and wc(Lwa) is the threshold frequency

for real-world adaptation.

This method aims to produce the closest rendering results to human perception with high-

dynamic-range scenes. In particular, it presents a rigorous approach in modelling the Purkinje break

effect (see Section 2.3.3 for the phenomenon). However, their model considers only luminance

perception. Accurate colour appearance phenomena were not modelled, e.g., Hunt effect, Stevens

effect, or simultaneous contrast effect (see Section 2.3.3 for more details on the phenomena). In

contrast, we conducted a full range of colour experiments, and derived a suprathreshold colour

appearance model in a wider range of luminance levels (up to 16 860 cd/m2).

Pattanaik et al. [1998] improved on [Ferwerda et al., 1996] using a multiscale model of adap-

tation and spatial vision, combined with the CIECAM97s model [CIE, 1998] (see Section 7.3.4 in

[Reinhard et al., 2005] for more details of the mathematics). Their model is based on a rigorous

survey of previous psychological literature, but they only use previous experimental data without

any new experiment. Their method is a two-staged mechanism. The first stage is a visual encoding

which aims to simulate cone and rod response with respect to spatially-varying adaptation, cor-

responding for a forward colour appearance model. The second stage is a display mapping that
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converts the perceptual information to a display signal. This stage is a combination of the par-

tial inverse appearance model and a partial inverse device characterisation. Their tone-mapping

algorithm is a simplified application of the CIECAM97s model.

The main structure of the visual encoding stage follows a Hunt-style structure (see the Hunt94

and CIECAM97s model in Section 2.3). The first step in visual encoding is to convert RGB input

to LMS cone and rod signals through sRGB (see Section 2.2.2) and a HPE transform [see Equa-

tion (2.20)]. These four channel images are spatially decomposed into four seven-level Gaussian

pyramids (a stack of seven Gaussian-blurred images). By subtracting adjacent Gaussian-blurred

images L/M/Sblur
s in the pyramid, they compute four six-level difference-of-Gaussian (DoG) stacks

L/M/SDoG
s at pixel (x,y), which are then normalised. After that, each of the DoGs in each of four

channels are scaled by the gain function (equivalent to the threshold function in [Ward, 1994;

Ferwerda et al., 1996]):

LDoG
s (x , y) = (Lblur

s (x , y)− Lblur
s+1 (x , y)) ·G(Lblur

s+1 (x , y)) ,

M DoG
s (x , y) = (M blur

s (x , y)−M blur
s+1 (x , y)) ·G(M blur

s+1 (x , y)) , (2.176)

SDoG
s (x , y) = (Sblur

s (x , y)−Sblur
s+1 (x , y)) ·G(Sblur

s+1 (x , y)) ,

where s indicates the stack level, and the gain function G is modelled as follows:

G(x) =
1

0.555(L+1)0.85 . (2.177)

The blurred image at level seven is retained and will form the basis for image reconstruction [Rein-

hard et al., 2005]. The pixels in the level (s=7) are adapted to the mean value:

Lblur
7 (x , y) = Lblur

7 (x , y)G((1−A)L
blur
7 +A· Lblur

7 (x , y)) ,

M blur
7 (x , y) =M blur

7 (x , y)G((1−A)M
blur
7 +A·M blur

7 (x , y)) , (2.178)

Sblur
7 (x , y) = Sblur

7 (x , y)G((1−A)S
blur
7 +A·Sblur

7 (x , y)) ,

where A is a user parameter for interpolation. The adapted cone signals are then converted to

achromatic and colour opponent signals following the Hunt94 and CIECAM97s models [CIE, 1998].

They then apply another contrast transducer functions on each channel respectively (see [Pattanaik

et al., 1998]).

The first step in display mapping is to rescale the basis stack (level seven) with the mean

luminance of a typical display Ld,mean (⇠50 cd/m2), which is taken by the gain function G [Equa-

tion (2.177)]:

Lblur
7 (x , y) =

Lblur
7 (x , y)

G(Ld,mean)
, M blur

7 (x , y) =
M blur

7 (x , y)

G(Md,mean)
, Sblur

7 (x , y) =
Sblur

7 (x , y)

G(Sd,mean)
. (2.179)

Finally, the stacks of DoGs (from zero to six levels) are accumulated in order to the adapted blurred

image at level seven. The computed LMS cone signals are converted back to RGB through XYZ with

gamma correction. Even though this method is technically sound, in practice, multi-scale Gaussian

pyramid tone mapping presents more obvious halo artifacts than other tone-mapping algorithms.
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Akyüz and Reinhard [2006] propose to combine a modified CIECAM02 model with tone map-

ping [Reinhard et al., 2002], in order to yield a better colour reproduction. As presented in Fig-

ure 2.17, when the employed colour appearance model can predict the real-world observation cor-

rectly, a tone-mapping algorithm is not required. However, insofar as the current conventional

standard for colour appearance (CIECAM02) fails to predict the perception under high-dynamic-

range luminances, the combination of the colour appearance model and tone mapping can be a

practical solution.

Akyüz and Reinhard [2006] applied a modified colour appearance model with scene viewing

conditions (forward) and output device viewing conditions (inverse). After that, tone compression

is performed only on luminance (Y in the Y x y domain). When Akyüz and Reinhard [2006] adapts

CIECAM02, the chromatic adaptation parameter D in CIECAM02 is modified [see Equation (2.90)

for the original CIECAM02 equation] as follows:

D0 = D(1−3s2+2s3), (2.180)

where s=
L− LT +0.1(Lmax− Lmin)

LT1
− LT0

, (2.181)

LT = Lmin+[0.6+0.4(1−k)](Lmax− Lmin), (2.182)

LT0
=max[Lmin, LT −0.1(Lmax− Lmin)], (2.183)

LT1
=min[Lmax, LT +0.1(Lmax− Lmin)], (2.184)

where if the luminance of a pixel is below LT0
, the original D is used. If it is greater than LT1

, D is set

to 0 for the pixel. Otherwise, D0 is used instead of D. According to colour appearance data such as

LUTCHI, the degree of adaptation increases in proportion with luminance. However, D0 decreases

the degree of adaptation. Therefore, the used modification of the adaptation parameter is observed

to conflict with previous findings.

In contrast, our colour reproduction mechanisms do not employ any tone-mapping algorithm.

They calculate the human observation as perceptual coordinates, and the perceptual values are

reproduced on target medium through an analytical inverse model (see Chapter 5 and 6 for more

details on our model and reproduction pipeline). Furthermore, our colour appearance model can

be used to keep the perceived colourfulness and hue of colour samples as close to the original as

possible during tone-mapping.

iCAM [Johnson and Fairchild, 2003] is an image appearance model that is intended to predict

the appearance of images, including HDR images. It combines components of traditional colour

appearance models with spatial models of vision. iCAM has been developed through empirical

modification of a colour appearance model, CIECAM02. iCAM aims to associate CIECAM02 with a

spatially-varying tone-mapping algorithm. The goal and approach are similar in a sense to [Akyüz

and Reinhard, 2006]. Kuang et al. [2007] introduced a revised image appearance model, called

iCAM06, which is essentially a combination of CIECAM02 with tone mapping [Durand and Dorsey,

2002].

We briefly review the mathematical details of the latest version of iCAM [Kuang et al., 2007].
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An RGB source image is transformed into XYZ through the sRGB transform (see Table 2.1 for the

transform). The XYZ image is then decomposed to a base layer and a detail layer through bilateral

filtering [Durand and Dorsey, 2002] [see Equation (2.159)] . The base layer is used as input to

the chromatic adaptation and tone mapping (modified from CIECAM02), while the detail layer is

combined after the tone-mapping process.

The chromatic adaptation of iCAM06 is inherited directly from CIECAM02 [see Equa-

tions (2.89), (2.90), and (2.91)]. They set the luminance adaptation parameter LA to 20%, and

surround factor F to 1 (average surround). The degree of adaptation D is empirically scaled down

to 30% (D scaled by 0.3). Instead of using the D50-adapted XYZ transform (see Table 2.2), the

white point of the CIECAT02 transform [see Equation (2.89)] is changed into D65. In particular,

they assume that the human visual system performs spatially-varying white adaptation. The Gaus-

sian blurred original XYZ image is used as a set of local white points in their implementation of the

chromatic adaptation in CIECAM02. However, our experiments (see Chapter 6) find that spatially-

varying white balancing yields unrealistic results. After that, the base layer is converted into LMS

cone and rod signals. In the Naka-Rushton equation in the CIECAM02 model, they empirically re-

place the exponent constant 0.43 with 0.75 (similar to 0.73 in CIECAM97s) in Equation (2.93).

They also include rod response modelling adapted from the Hunt94 model [see Equations (2.40),

(2.41), and (2.43)].

Next, the tone-mapped base layer is converted to XYZ values and combined with the detail

layer. The combined layer is converted to the IPT colour space [Ebner and Fairchild, 1998]. In the

IPT colour space, the image coordinates (lightness, chroma, and hue in the IPT space) can be used

as perceptual coordinates. They also empirically adjusted image attributes (contrast of detail layer,

chroma, and surround effect). The detail later is changed by using FL in CIECAM02 to mimic the

Stevens effect:

Detailsa = Details(FL+0.8)0.25
. (2.185)

The chroma is also modified to mimic the Hunt effect:

P 0 = P ·[(FL+1)0.2(
1.29C2−0.27C+0.42

C2−0.31C+0.42
)] , (2.186)

T 0 = T ·[(FL+1)0.2(
1.29C2−0.27C+0.42

C2−0.31C+0.42
)] , (2.187)

where C =
p

P2+T2 . (2.188)

With respect to the surround effect, I coordinates (lightness) are modified:

Ia = Iλ , where λdark = 1.5, λdim = 1.25, λaverage = 1.0. (2.189)

Finally, the IPT colour space values are transformed to RGB signals through the XYZ colour space,

then these signals are clamped to the 1st and 99th percent of the image data to achieve improved

plausibleness in the final output images.
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As opposed to previous colour appearance models, in fact, the modification of CIECAM02 in

iCAM is not derived from experimental data (empirical modification in previous equations), al-

though psychophysical experiments were conducted for evaluation purposes. In contrast, our colour

appearance model is analytically derived from psychophysical experimental data like other colour

appearance models; as a result, our model can achieve better performance than other empirical

image appearance models (see Chapter 6 for more details on comparison). However, our aim is

not to derive a full image appearance model; instead, we want to derive a pure colour appearance

model that enables accurate predictions of colour perception. (see Chapter 5 for more details on

our colour appearance model).

2.5.4 Summary

We first reviewed HDR image acquisition algorithms, which enables the creation of HDR images

from multiple exposures. HDR image acquisition algorithms comprise two main stages: solving for

the camera response function (converting pixel values to exposure) and accumulating radiance (ex-

posure divided by time interval) at each pixel. Curve-fitting [Debevec and Malik, 1997], polynomial

regression [Mitsunaga and Nayar, 1999], or ICC profiling [Göesele et al., 2001] yield a camera re-

sponse function from captured camera signals. As it turns out, the first stage is not necessary if we

utilise the solid-state response to incident light directly such as [Mann and Picard, 1995; Yamada

et al., 1995; Xiao et al., 2002]. Professional DSLR cameras provides direct output from the sensor,

called RAW images. With these, we can simplify the HDR imaging algorithm with improved accu-

racy, skipping the first stage — including non-linear regression (see Chapter 3 for more details on

the our HDR imaging algorithm).

Theoretically, if there is a display which can produce luminance as it exists in the real world in

terms of dynamic range and maximum luminance, the captured HDR images can be reproduced on

the display by simply mapping the camera signals to the display ones. Seetzen et al. [2004] pro-

pose an HDR display with a higher dynamic range and brighter maximum luminance than existing

displays.

However, the luminance levels of most displays is not identical to that of the real world. We

need a specific solution to deal with this difference of luminance levels, called tone-reproduction

operators or tone-mapping algorithms. The main aim of tone-reproduction operators is to achieve

the same appearance on a output display, which is identical to the human perception of the real

scene. The research falls into three categories: global adaptation models, local (spatially-varying)

adaptation models, and image appearance models. Global adaptation models [Tumblin and Rush-

meier, 1993; Ward, 1994; Ward et al., 1997; Drago et al., 2003; Reinhard and Devlin, 2005; Kim

and Kautz, 2008b] attempt to achieve a similar response function to the human response function

on incident luminance. They generally provide high computational efficiency, but are less able to

handle the variation in dynamic range than local approaches. Local adaptation models [Tumblin

and Turk, 1999; Fattal et al., 2002; Reinhard et al., 2002; Durand and Dorsey, 2002] attempt to

achieve great flexibility in the compression of dynamic range with the assumption that the human
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eye is less sensitive to variations at low spatial frequencies than higher ones. They manipulate fre-

quency, gain, or gradient in multi-bandwidths (detail and base layers), and often struggle with high

computational cost and halo artefacts. Tone-mapping operators [Schlick, 1994; Tumblin and Turk,

1999; Mantiuk et al., 2009] address colour reproduction problem while compressing luminance and

attempt to solve the colour problem in an empirical manner. Finally, image appearance models [Fer-

werda et al., 1996; Pattanaik et al., 1998; Johnson and Fairchild, 2003; Akyüz and Reinhard, 2006;

Kuang et al., 2007] attempt to make a computation model identical to the human vision system.

They are often based on physiological assumptions, measurements from primates, or psychophysical

experiments.

Most tone-mapping algorithms are derived from the same assumption that the human visual

system has a specific mechanism to observe real-world luminance. They attempt to model the re-

sponse mechanism from previous experimental evidence or their own hypothesis, where the used

data is often limited in dynamic range compared to real-world luminance, or not appropriate, or

the hypothesis cannot prove the scientific soundness without experimental observation. These tone-

mapping algorithms only modify lightness while keeping the colour channels untouched, suggested

by Schlick [1994]. However, as shown in [Tumblin and Turk, 1999; Mantiuk et al., 2009], this may

lead to perceptually flawed colour reproduction. Mantiuk et al. [2009] attempt to change colourful-

ness of tone-mapped images according to experimental data, but they would need to include other

colour properties such as lightness and hue in order to obtain plausible colourfulness. On the other

hand, image appearance models attempt to solve this colour problem with empirical modification

to the current colour appearance model by combining CIECAM02 with a tone-mapping algorithm.

However, such hybrid solutions have struggled with performance. In contrast, our approach is to

develop a novel colour appearance model derived from new experimental data that covers the full

working range of the human visual system. This approach attempts to minimise any empirical mod-

ification to previous equations or unproved hypothesis (see Chapter 5 and 6 for more details on our

model).

2.6 Discussion

Although HDR imaging technology extends the dynamic range in input/output media, the newly

extended dynamic range in HDR imaging is not compatible with previous cross-media colour re-

production systems as they had been developed and optimised for integer-based LDR imaging sys-

tems. For instance, first, traditional characterisation techniques for digital cameras fail with HDR

imaging, and produce considerable errors. The dynamic range of traditional colour targets and

modelling techniques can only cope with the dynamic range of ordinary LDR cameras (see Chap-

ter 3). Second, image appearance on high-luminance displays, e.g., HDR displays, are perceived

to be different, compared with their appearance on low-luminance displays like CRT or LCD dis-

play. Specific colour appearance phenomena, the Stevens and Hunt effects, are strongly observed

on high-luminance displays as our psychophysical experiments validated (see Chapter 4). Third,

current colour appearance models fail in predicting such colour appearance phenomena under high
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luminance levels and are not applicable for HDR image reproduction (see Chapter 5 for results).

The reason for the incompatibility is that current colour appearance models were derived from low-

luminance experimental data (under about 690 cd/m2) limited by the available display technology

in the 1990s, such as CRT displays. To correct this problems, a newly derived cross-media colour

reproduction system for HDR imaging is presented in Chapter 6. It comprises three stages: HDR

characterisation, a forward colour appearance model, and an inverse colour appearance model. Re-

sults indicate that the proposed system yields high-fidelity colour reproduction in HDR images (see

Chapter 6 for more details on the reproduction pipeline). The following chapters will describe our

experiments in more detail.
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Chapter 3

Characterisation for High-Dynamic-Range

Imaging

In this chapter, a new practical camera characterisation technique is presented to improve colour

accuracy in high-dynamic-range (HDR) imaging. Camera characterisation refers to the process of

mapping device-dependent signals, such as digital camera images, into a well-defined colour space

(see Section 2.2 for background). This is a well-understood process for low-dynamic-range (LDR)

imaging and is part of most digital cameras. It is usually a mapping from the raw camera signal to

the sRGB or Adobe RGB colour space. This chapter presents an efficient and accurate characterisa-

tion method for HDR imaging that extends previous methods originally designed for LDR imaging.

We demonstrate that our characterisation method is very accurate even in unknown illumination

conditions, effectively turning a digital camera into a measurement device that measures physi-

cally accurate radiance values, in terms of both luminance and colour, and rivals more expensive

measurement instruments. We then estimate the correlated colour temperature of the scene as a

reference white point for white-balancing the HDR radiance map. Finally, the physically meaningful

HDR radiance map is used later on as input to our colour reproduction system.

3.1 Motivation

Recent advances in HDR imaging allow us to easily obtain radiance maps with off-the-shelf digi-

tal cameras by combining multiple exposures into a single HDR image [Mann and Picard, 1995;

Saito, 1995; Debevec and Malik, 1997; Mitsunaga and Nayar, 1999; Robertson et al., 1999]. These

acquired radiance maps are commonly used as environment maps for lighting simulations or for

computational photography applications. However, the radiometric accuracy of the acquired HDR

radiance maps — in terms of both luminance and colour — has rarely been discussed or evaluated

because traditional characterisation methods for LDR imaging [Martínez-Verdú et al., 2000; Pointer

et al., 2001; MacDonald and Ji, 2002; Martínez-Verdú et al., 2003; Kim et al., 2005; ISO, 2006;

Normand et al., 2007] were not designed to characterise HDR radiance maps. We propose a new

camera characterisation method that works well for HDR imaging as it is more accurate than many

of the LDR methods and is very efficient in terms of acquisition time and cost. Our method is based
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on the insight that common reflective targets have two main drawbacks: they only offer a low dy-

namic range which makes them not a good choice for HDR imaging, and that characterisation based

on reflective targets requires both the reflectance of the target and the spectrum of the illuminant to

be known. Therefore, we propose to use a novel back-lit transparency target specifically designed

for HDR imaging, offering a higher dynamic range and wider colour gamut. Our method only re-

quires the emitted radiance to be known, which can be measured using a spectroradiometer. This

enables us to accurately characterise digital cameras used for HDR imaging. We show the effective-

ness of the new method by characterising three different digital cameras. The achieved accuracy

of the cameras is similar to the accuracy of a spectroradiometer. As we will demonstrate, radiance

maps acquired by different cameras are virtually the same when using our characterisation method.

Our goal is to develop a novel method to obtain a physically-accurate HDR radiance map with a

camera system. Then, the captured radiance maps are white-balanced and tone-mapped for display.

The following sections describe a novel HDR characterisation method and a novel white-balancing

method for displaying HDR radiance maps.

3.2 Acquisition of HDR Radiance Maps

3.2.1 Response of Digital Cameras

The sensing area of digital cameras is a solid-state sensor upon which incident photons cause charge

to accumulate at discrete locations called pixels. This charge is transferred as an output digital signal

via an ADC [Yamada, 2006] (see Section 2.2 for more details). The amount of digitised electronic

charge is linear to irradiance on the sensing area — excluding the noise floor (fixed-pattern noise,

sensor dark current, etc. [Holst, 1998]) and blooming (overflowing) [Janesick, 2001] of the sensor

response (see Section 2.2.4 for more details). Typically, a non-linear function is applied to improve

the dynamic range of the camera and at the same time this also takes care of gamma-correction for

display. Most DSLR cameras allow the 12–16 bit linear digital signals to be output before non-linear

processing (gamma correction, tone mapping, and histogram equalisation) as a RAW image [Coffin,

2009]. Within the possible range of camera signals, these RAW images correspond to the amount of

charge of all the incident photons on the sensor, effectively measuring scene radiance at each pixel.

Figure 3.1 presents the measured responses of a digital camera. A Canon 350D DLSR camera

captured a transparency reference target, IT8.7/1 [ANSI, 1999] [see Figure 3.1(a)], in RAW as non-

linear TIFF images. Luminances of greyscales in the target were measured by a spectroradiometer

(a Jeti Specbos 1200) which has a luminance accuracy of ±0.05 at 1000cd/m2 and chromaticity

repeatability of ±0.0005 (x,y) [Morgenstern et al., 2004]. The corresponding signal levels were

read in RAW and non-linear TIFF images. Figure 3.1(b) presents a comparison between the ordinary

non-linear response (marked with green triangles) and the RAW response (marked with blue-lined

white triangles). As shown in Figure 3.1(b), the RAW camera response is linearly proportional to the

incident light while the ordinary camera response presents a non-linear trend (a power function) in

response. In this experiment, we use linear RAW signals to generate HDR radiance maps so that we
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Figure 3.1: Image (a) presents the linear RAW sensor response of a Canon 350D digital camera (inter-

polated into RGB channels, but not gamma-corrected) and shows the captured transparency reference

target, IT8.7/1 [ANSI, 1999]. Image (b) presents characteristic curves of the ordinary non-linear re-

sponse, and the RAW sensor response from the camera. The Y axis, which signifies the acquired response,

is normalised in the range [0.0,1.0]. The X axis represents the luminance in greyscales of the target

[image (a)] measured by a spectroradiometer. As the plot shows, the RAW response is proportional to

the amount of incident light.

avoid curve fitting regression and its potential inaccuracies. Next, we demonstrate how to generate

HDR radiance maps from RAW responses.

3.2.2 Camera Setup

In this experiment, three different DLSR cameras were tested: a Nikon D100 with a 35mm lens,

a Canon 350D with an 18–55mm lens, and a Nikon D40 with an 18–55mm lens. These cam-

eras support manual control over exposure parameters. The exposure parameters were manually

calibrated with an identical setting of aperture size (f/11), shutter speed (1/4000–30seconds in

one-step intervals for exposure bracketing — HDR source images), and film speed (ISO 200). No

automatically-estimated exposure parameters were involved in producing the RAW output images.

A white-balancing procedure is required to display the characterised radiance map. Like the ex-

posure parameters, the cameras provide automatic estimation of the white point of captured scenes.

The estimated white point information is essential for achieving colour constancy (see Section 3.4).

This automated white balancing is generally the default option in digital cameras. However, the

cameras’ internal colour temperature estimate may not be directly applicable for white balancing,

as it is often skewed to accommodate user preference. For instance, with the Canon 350D, we

captured a GretagMacbeth ColorChecker DC chart under different illumination conditions with a

colour temperature ranging from 2000K to 7500K in 500K intervals. We measured the correlated

colour temperature (CCT) of the scene illumination and recorded the white-balancing multipliers

estimated by the camera. Then the white-balancing multipliers are converted to CCT. The brown

sigmoidal curve in Figure 3.2 shows the Canon 350D’s colour temperature estimation of the Gre-

tagMacbeth images (derived from white balancing multipliers), which indicates a deliberate choice

to overestimate the colour temperature (yielding more yellowish images under lower colour tem-



3.2. Acquisition of High-Dynamic-Range Radiance Maps 78

1500

2500

3500

4500

5500

6500

7500

1500 2500 3500 4500 5500 6500 7500

Radiometric Measurements in K

E
st

im
at

ed
 T

em
pe

ra
tu

re
 in

 K
Figure 3.2: Correlated colour temperature estimates from a digital camera (Canon 350D).

peratures). Therefore, although the cameras store the estimated white-balancing multipliers in the

header of the RAW files, we discard them and use our estimation method of scene illumination in or-

der to display the characterised image more accurately, i.e., we use the raw colour response directly

from the sensor instead of the automatically white-balanced image. As a result, the RAW sensor re-

sponse (without auto white balancing) appears cyan-greenish as the incident light is filtered by an

infrared-blocking filter (cutting out the wavelengths beyond red, see Section 2.2.4 for more details)

before light reaches the solid-state sensor. Then, instead of using the automatic white balancing

from the camera value, we estimate a correlated colour temperature of the scene illumination with

our method (see Section 3.4 for more details) and conduct white balancing to display images.

3.2.3 Low-Dynamic-Range Source Images

Previous research [Mann and Picard, 1995; Debevec and Malik, 1997; Mitsunaga and Nayar, 1999;

Robertson et al., 1999] presents many HDR imaging methods to derive an exposure function to

describe a camera’s response to incident light. The exposure function virtually linearises non-linear

camera responses in multi-exposed images. These regression methods contain potential compu-

tational errors in estimating the non-linear exposure function. With respect to accuracy, the best

solution for generating HDR images is to use the linear response from a RAW image rather than

the non-linear response from ordinary images; hence, we choose the RAW response to build HDR

RAW response

Red
Interpolated

Green Blue

Figure 3.3: Channel separation from RAW response to RGB channels.
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images. As such, the first step in the HDR imaging algorithm (estimating a camera exposure func-

tion, see Section 2.5.1 for more details on HDR imaging algorithms) is not needed. Instead, an

additional procedure is required to use a RAW response. A RAW response is a Bayer-pattern mosaic

image of a single channel where generally a red, green, blue, and green channel pattern (or CMYM)

covers the solid-state sensor. To yield an ordinary RGB image of three channels, we need to inter-

polate the missing data [Shortis et al., 2005]. (see Figure 3.3). We employed a so-called adaptive

homogeneity-directed method [Hirakawa and Parks, 2003] for the interpolation process by adapting

[Coffin, 2009]. Unlike ordinary conversion of RAW images, we do not perform gamma correction,

tone reproduction (e.g., histogram equalisation), and white balancing. The RAW images are stored

as 16-bit integer images. Note that these cameras have a 12-bit ADC, so output signals are rescaled

up to 16 bits and stored.

3.2.4 High-Dynamic-Range Image Acquisition

We obtained linear 16-bit RAW images with exposure variations P and shutter times T , from which

an HDR radiance map was generated. Logarithms of radiance values E at each pixel i are computed

from the weighted average of the differences between the pixel response Zi and the shutter time

log2 T in shutter intervals j:

log2Ei =

PP
j=1[log2(Zi j)− log2(Tj)]w(Zi j)

PP
j=1 w(Zi j)

, (3.1)

where the weighting function w is a normalised pyramid:

w(z) =

8

<

:

z− Zmin , z  1
2
(Zmin+ Zmax)

Zmax−z , z > 1
2
(Zmin+ Zmax)

, (3.2)

where Zmax is 65535, and Zmin is 0. This procedure is similar in sense to the second stage [Equation

(2.135)] of Debevec and Malik [1997]’s method. Instead of deriving an exposure function from

photographs, we take the direct sensor signals as the first stage. By taking RAW responses from

the cameras [Debevec and Malik, 1997; Mitsunaga and Nayar, 1999; Robertson et al., 1999], the

acquisition of HDR radiance maps is simplified.

Figure 3.4 is a qualitative comparison between the RAW sensor signals and the HDR radiance

map. These two sets of values are proportional to measured luminance. We tested the linearity of

these two responses to incident luminance by computing the CV against incident luminance [see

Equation (2.12) for more details on the CV calculation]. The RAW signal’s CV to the incident lumi-

nance was 6.66, and the HDR radiance’s CV was 2.54. Hence, measuring luminance by using the

HDR radiance map is more accurate than simply using the RAW signal. The next section describes

how to calibrate colours in the HDR radiance map.

3.3 High-Dynamic-Range Characterisation

Camera characterisation is defined as the transform of device-dependent signals into device-

independent coordinates [Johnson, 2002] such as CIEXYZ tristimulus values. Ideally, the same



3.3. High-Dynamic-Range Characterisation 80

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

Input luminance [cd/sqm]

N
o
rm

a
li
s
e
d
 o

u
tp

u
t 
re

s
p
o
n
s
e

 

 

RAW Camera Response

Ideally Linear Response

HDR Radiance Map

Figure 3.4: Characteristic curves of: RAW sensor response of the Canon 350D camera and an HDR

radiance map is green channel, compared with the ideally-linear response. The Y axis, which signifies

the acquired response, is normalised into the range [0.0,1.0]. The X axis represents luminance measured

by a spectroradiometer. The square points on the diagonal show the ideally linear response. As the plot

shows, the RAW response and the computed HDR radiance map are proportional to the incident light.

CVs to the ideally linear signals are 6.66 (RAW signals) and 2.54 (HDR radiance map).

mapping works for any illumination. However, as mentioned in Section 2.2.5, previous character-

isation methods were either limited to known illumination conditions [Pointer et al., 2001; Mac-

Donald and Ji, 2002; Johnson, 2002; ISO, 2006] or required expensive equipment and prohibitive

measurement times [Martínez-Verdú et al., 2000; MacDonald and Ji, 2002; Martínez-Verdú et al.,

2003; ISO, 2006; Normand et al., 2007]. Furthermore, these characterisation methods were geared

towards low-dynamic-range imaging.

Inanici and Galvin [2004] and Krawczyk et al. [2005] proposed to rescale the measured lu-

minance values in HDR radiance maps by comparing them with measurements from a luminance

meter. In contrast, our method calibrates luminance and colour at the same time. We propose a

new technique which offers the simplicity of reflectance-based techniques with the accuracy and

the universal applicability of monochromator-based techniques. Furthermore, it is well-suited for

HDR imaging and can characterise both colour and luminance. Our experiments show that a digital

camera, characterised with our method, can capture measurements of the colour and luminance

information of a scene that are almost identical to the measurements from a spectroradiometer that

we tested. See Chapter 3 for more details of our characterisation method.

Through HDR imaging (see Section 3.2.4 for more details), we build a device-dependent HDR

radiance map, where the HDR trichromatic response values (red r, green g, and blue b) of pixels on

the sensor are given as the sum of the product of the spectral power distribution of the light source

P(λ), the reflectance (or transmittance) of the imaged object S(λ), and the spectral responsivities
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of the colour filters Dr/g/b(λ)— assuming that incident light is reflected from object surfaces:

[r,g,b] =
X

λ

P(λ)S(λ)Dr/g/b(λ)∆λ . (3.3)

The sum in Equation (3.3) is taken over a suitable wavelength range in the visible part of the

spectrum, for instance, from 380nm to 780nm [ISO, 2006] (see Figure 2.8 for an example). The

calculation of these response values is similar to the computation of device-independent tristimulus

values, such as CIEXYZ:

[x,y,z] =
X

λ

P(λ)S(λ)Fx/y/z(λ)∆λ , (3.4)

where Fx ,y ,z(λ) are the CIE colour matching functions [CIE, 1986]. The only difference between

Equation (3.3) and (3.4) is the use of different weighting functions Dr/g/b and Fx ,y ,z . Therefore,

HDR characterisation finds a mapping between the colour spaces of HDR radiance and tristimulus

values by modelling the difference between the Dr/g/b and Fx ,y ,z functions.

Our technique is based on two insights. First, the product of the spectral power distribution of

the light source P(λ) and the reflectance of the calibration target S(λ) can be measured in a single

step using a spectroradiometer, allowing camera characterisation that is efficient both in terms of

cost and measurement time. Second, a novel back-lit transparency target specifically optimised for

HDR imaging has a wider gamut and higher dynamic range than ordinary reflective targets. This

makes the characterisation produce accurate measurements of luminance and colour and makes it

applicable even in unknown illumination conditions.

3.3.1 Setup

We created our own transparency targets by photographically enlarging the IT8.7/1 [ANSI, 1999]

colour chart onto Kodak Ektachrome professional film (8-by-10 inch) such that each patch matches

the sensing area of the employed spectroradiometer (approximately 8mm in diameter). Two en-

larged identical targets, one placed over three sheets of neutral density (2⇥) filters (in total 8⇥
darker), are placed on an uniform light emitting table in a darkroom to produce a training set with

576 colour patches and a dynamic range of 4.53 orders of magnitude. The light source’s correlated

colour temperature (CCT) was 5434K. Using a transparency target not only offers a high dynamic

range, but also provides a very wide colour gamut, [Figure 3.5 and 3.6(a)].

Two GretagMacbeth ColorChecker targets and two 800W halogen light sources (CCT: 2856K)

are used to produce a test set with 48 colour patches. One target is illuminated by two halogen-type

lights, which have different spectral characteristics from the light source used for the training data

set. The other target is placed in a shadow area such that the scene has a large dynamic range (4.00

orders of magnitude). The emitted/reflected radiance of each patch in these two experimental sets

were measured with the spectroradiometer, see Figure 3.6. Finally, we took HDR images of these

two datasets using three different digital cameras for characterisation (Canon 350D, Nikon D100,

and Nikon D40), see Figure 3.7.
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Figure 3.5: Image (a) shows a comparison of measured gamut boundaries. The transparency HDR

target provides a comparatively larger colour gamut than an ordinary reflective target (GretagMacbeth

ColorChecker). Each side of our target [as seen on Image (b)] is an enlarged IT8.7/1 [ANSI, 1999]

colour chart on Kodak Ektachrome professional film (8-by-10 inch).
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Figure 3.6: Image (a) presents the training setup of the HDR transparency reference colour samples.

576 colour patches were measured with a spectroradiometer and captured by a camera in a darkroom.

Image (b) shows the setup for testing HDR characterisation models. Two GretagMacbeth ColorChecker

targets and two 800W halogen light sources on the left (CCT: 2856K) were used to produce a test set

with 48 colour patches. Plot (c) shows the spectral power distribution of the fluorescent light bulb (of

the training setup) which presents a peak between 530 and 580 nm. Plot (d) presents the spectral

power distribution of the halogen light bulb (of the test setup) which is spread more toward infrared

wavelengths.
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3.3.2 Characterisation

In traditional colorimetry (see Section 2.2.2), P(λ) in Equation (3.4) refers to relative spectral power

distributions, which are always normalised (100 at 560nm [Hunt, 1998]). This discards the in-

tensity scale of the illumination, which is why previous characterisation models have difficulties

calibrating absolute scales. Furthermore, when tristimulus reflectance values are measured by a

spectrophotometer (e.g., GretagMacbeth Spectrolino), a calibrated tungsten light is used, which is

then converted into a CIE D50 illuminant PD50(λ) [Equation (3.4)]. However, the scene illuminant

P(λ) [in Equation (3.3)] is different from that, effectively building this mismatch into the character-

isation, which poses problems when different scene illumination is used after characterisation (see

Figure 3.8). Hence, our technique uses identical P(λ) and absolute spectral power distributions to

solve both scale and illumination problems (see Figure 3.9 for our geometry setup).

Using the above setup, we know the emitted radiance values for each patch of our transparency

target (measured using the spectroradiometer), corresponding to Equation (3.4). Furthermore, the

linear camera response for each patch is known from the HDR image (corresponding to Equa-

tion (3.3), see Appendix A.3 for the measurements of the colour samples). Since the illumination

is identical for both, we can now find a (least-squares) linear transform between the RGB camera

response and the physical CIEXYZ radiance values that is applicable to unknown lighting [the P(λ)
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Figure 3.7: Setup of HDR characterisation. A back-lit transparency colour target is captured by a digital

camera and all its colour patches are measured using a spectroradiometer, which forms the training set

that is used to compute the characterisation model. A second test set is acquired for validation purposes.

It consists of two GretagMacbeth colour charts illuminated by light from a halogen bulb.
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Figure 3.8: Traditional characterisation setup of reflectance-based models. In order to measure re-

flectance, spectrophotometers use an internal light source (see Section 2.2.2 for more details on geome-

try). Generally a tungsten or xenon bulb is used as light source, then converted into a CIE D50 illumi-

nant to yield CIEXYZ measurements. However, the scene illumination that is used in characterisation

is different from the CIE D50 illuminant. Such a spectral mismatch is built into the characterisation,

which poses problems when different scene illumination is used after characterisation.
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Figure 3.9: Measuring geometry setup for high-dynamic-range characterisation. Our HDR trans-

parency target is installed on top of the uniform light emitting table in a dark room to produce a

set of colours (576 patches). The light source, the colour samples, and measuring device are placed

on a straight line (normal to transparency), where the emitted radiances of the patches are measured

simultaneously by the spectroradiometer and a digital camera that yields HDR images. Therefore, the

identical light source is used in both tristimulus and HDR radiance measurements and will be cancelled

out when deriving a characterisation model.
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cancels out]:

X= (A> ·A)−1 ·A> ·M , (3.5)

where X is a 3⇥3 transform for characterisation, A is a matrix containing the linear RGB camera

response [r,g,b] for each patch, and M is a matrix containing the measured radiometric CIEXYZ

values [x,y,z] for each patch.

This transform X can now be used to map any (high-dynamic-range) RGB value into a physically

meaningful CIEXYZ value, independent of the illumination. In our particular setup we find three

transforms, one for each digital camera.

3.3.3 Characterisation Models

Table 3.1 presents the matrices of the linear transform from camera HDR into CIEXYZ coordinates,

which were computed as outlined in Section 3.3.2. Note that these matrices not only transform

colorimetric information but also luminances, because we take absolute scales into account such

that the characterised coordinates are identical to the physical radiance measurement. However,

the scale of the matrices may be different for other HDR assembly algorithms.

Canon 350D / 18-55mm lens

R G B

X 6.8364 1.1685 0.3256

Y 3.0657 4.1205 -1.2861

Z 0.3650 -0.6863 6.3905

Nikon D40 / 18-55mm lens

R G B

X 12.9566 1.6246 0.8274

Y 6.0406 6.4671 -1.5985

Z 0.5537 -0.9170 11.5996

Nikon D100 / 35mm lens

R G B

X 10.1001 1.4246 0.5921

Y 4.6565 5.2054 -1.5151

Z 0.4985 -0.7648 10.1364

Averaged

R G B

X 9.9644 1.4059 0.5817

Y 4.5876 5.2643 -1.4666

Z 0.4724 -0.7894 9.3755

Table 3.1: Transformation matrices from high-dynamic-range signals into CIEXYZ. The transforms

were computed from HDR radiance maps of our transparency target and the corresponding radiance

measurements. Averaged refers to the mean matrix of the three different cameras.

3.4 White Balancing of HDR Radiance Maps

Our mapping transforms HDR input images into physically-meaningful CIEXYZ values. However,

in case an image is not intended for measurement purposes but for display (e.g., using a tone-

mapping method), we need to take the human visual system into account, which adapts to a given

illumination condition. This is a classical issue and is traditionally called white balancing. There

are a variety of techniques available to simulate this adaption [Hubel et al., 1999; Fairchild, 1991;

Finlayson et al., 1997].
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Colour temperature is defined as the spectral power distribution of a Planckian blackbody radi-

ator [Wyszecki and Stiles, 1982]. Even though many real-world illuminants are not exactly equal

to any of the chromaticities of a blackbody radiator, we can compute the correlated colour temper-

ature (CCT) [Holm and Krochmann, 1975], which refers to the closest matching temperature. In

our work, we estimate the CCT of a scene. While this assumes the scene illumination to be on the

blackbody locus, it acts as a constraint which allows us to find good estimates.

Techniques for estimating the correlated colour temperature are usually a part of computational

colour constancy [d’Zmura and Lennie, 1986], which simulate the human visual system’s chromatic

adaptation in digital imaging. Conceptually, these algorithms first estimate the correlated colour

temperature and then balance the white point of the image accordingly. In the context of this

thesis, we use colour constancy in two ways. First, we propose an efficient method to estimate

the correlated colour temperature of a scene; and second, we white-balanced the captured HDR

radiance maps for final display.

Many colour constancy methods have been proposed (see Section 2.2.6 for more details), but

despite the large variety of available methods, no algorithm can be regarded as universal. In prac-

tice, the grey-world and maxRGB approaches perform well on natural, real-world images [Hordley,

2006; Gijsenij and Gevers, 2007]. We therefore proposed an enhanced version of the grey-world

algorithm to estimate the scene’s CCT. We derive a linear transform from real-world training images

with radiometric measurements instead of synthetic images [Barnard et al., 2002], and we further

apply a weighting scheme that combines the maxRGB and grey-world methods.

3.4.1 Estimating the Scene Illumination

The camera signal C (for each colour channel k = r, g, b) is the sum of the product of surface

reflectance S(λ), camera response function Dk(λ) (e.g., influenced by colour filters), and irradiance

P(λ) over all wavelengths λ:

Ck =
X

λ

P (λ)S (λ)Dk (λ)∆λ . (3.6)

We characterise Dk(λ) [Barnard and Funt, 2002] (see Section 3.3 for more details), which allows

us to obtain (linearised) estimates of the radiant power Φ = P(λ)S(λ).

However, both P(λ) and S(λ) are unknown, but we need to estimate the correlated colour

temperature T of the scene illuminant P(λ). We start from the grey-world assumption that the

average of all surface reflectances in a scene is a neutral reflectance [Buchsbaum, 1980]. However,

as mentioned in [Barnard et al., 2002; Gijsenij and Gevers, 2007; Gehler et al., 2008], real-world

statistical data shows that the average is different from perfect neutral reflectance. Unlike previous

database-based grey-world methods [Barnard et al., 2002; Gijsenij and Gevers, 2007; Rosenberg

et al., 2003] that either use synthetic training images or training images without knowing the actual

scene illuminant, we use a database of characterised real-world photographs as well as accurately

measured scene illuminants P(λ).

We first captured 35 training images of real-world scenes (see Figure 3.10) under different
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illumination conditions with a colour temperature Tm ranging from 2000K to 7500K, which we

measured on a Spectralon tile that was placed in each scene using the spectroradiometer. The

Spectralon tile was always oriented such that it was facing the main light source. It was usually

removed from the scene when the training images were photographed (see Figure 3.10).

The radiant power values Φ of each pixel (in each image) are then projected onto the blackbody

locus using Holm and Krochmann [1975]’s method, which is also used by the spectroradiometer

that we used to estimate the CCTs of the training data, yielding the (per pixel) correlated colour

temperature T :

argmin
T

h

�

ue−uT
�2+

�

ve− vT
�2
i1/2

, (3.7)

where (ue, ve) are the radiance chromaticity coordinates of the pixel (derived from their radiance

value) and T is the temperature of the nearest point (uT , vT ) on the Planckian locus. The colour

temperatures Ti of pixels Zi within each image are then averaged together using a weighted average

(similar to grey-world):

T =

P

i Tiw(Zi)
P

i w(Zi)
. (3.8)

Our weighting function w() is proportional to the luminance of a pixel, i.e., zero weights are applied

to the pixels with smallest luminance and a weight of one is applied to the brightest pixels. The

colour temperatures of the brighter pixels are weighted more than those of the dark area. This

weighting takes into account brighter signals more than the dark in a similar sense to the MaxRGB
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Figure 3.10: Examples of the training images for our white balancing. We use raw sensor signals (dis-

carding the camera’s auto white balance) and the spectral power distribution of the scene illumination

(measured on a Spectralon tile) as our training data.
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method (which considers the brightest signal).

From this training data, we then derive a simple affine transformation Tm= a ·T+ b that maps

from T to the accurately measured Tm. We estimate the two parameters a and b of this model using

linear regression:

MT = (T
> ·T)−1 ·T> ·Tm , (3.9)

where T refers to the vector containing all training CCTs T , Tm refers to the vector containing all

measured CCTs Tm, and MT is a matrix containing the two parameters. For any new image, we

simply compute T and map to the actual colour temperature Ta with MT .

3.5 Results

3.5.1 Colour Accuracy of HDR Characterisation

We have tested our HDR characterisation methods with three different cameras (Nikon D100, Canon

350D, and Nikon D40). For this we have computed three characterisation models, one for each cam-

era, as described in the previous section [using our transparency colour target, see Figure 3.6(a)].

We analyse the radiometric accuracy of each of the three characterisation models (one for each

camera) by comparing their results against physical measurements from the spectroradiometer. For

each comparison, we compute three different error measures in order to judge the accuracy. First,

we compute CIEDE2000 [CIE, 2001] values, which are commonly used to compare colours in a

perceptual fashion (see Section 2.3.5 for more details on the formulae). This method is based on

the CIELAB colour space [CIE, 1986], and as such is really only valid for low dynamic range values.

Nonetheless, we include it for completeness. Second, we compute CIE Yu0v0 coordinates [CIE,

1986] for the characterised HDR image as well as the measurements from the spectroradiometer,

and compute (relative) median differences between them. Third, we compute the (relative) median

differences between the characterised CIEXYZ values and the measured CIEXYZ values.

We first perform these comparisons within the training set [transparency target, see Fig-

ure 3.5(b)], i.e., we validate that a linear characterisation model is sufficient. To this end, we take

the original HDR images (one for each camera), convert them to CIEXYZ with the characterisation

matrices from Table 3.1 and compute the CIEDE2000 values, Yu0v0 median differences, and CIEXYZ

median differences for each colour patch in the transparency target. As can be seen in Table 3.2(a),

the errors are comparatively low.

Furthermore, we validate how well the characterisation models work with test scenes that were

taken under different illumination. Figures 3.6(c) and (d) show significant differences in spectral

characteristics between the training scene (fluorescent light) and the test scene (halogen light).

Our first test scene consists of two ColorChecker charts illuminated under halogen light, shown

in Figure 3.6(b). As can be seen again in Figure 3.11 and Table 3.2(b), the errors are quite low,

especially for the Canon 350D. We compare this result of our method [Kim and Kautz, 2008a] with

the previous reflectance-based LDR characterisation [ISO, 2006] technique and the HDR assembly

method using ICC profiles [Göesele et al., 2001] (generated by GretagMacbeth ProfileMaker), see
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(a) Training set ∆E00 Y u0v0 XYZ

Canon 350D 1.121 0.103 0.013 0.116

Nikon D100 1.311 0.096 0.022 0.117

Nikon D40 1.486 0.066 0.026 0.083

(b) Test set ∆E00 Y u0v0 XYZ

Canon 350D 0.480 0.111 0.016 0.114

Nikon D100 3.816 1.214 0.035 1.660

Nikon D100 (IR filter) 1.615 1.193 0.048 1.439

Nikon D40 3.104 0.884 0.038 1.192

(c) Test set – other methods ∆E00 Y u0v0 XYZ

Canon 350D (LDR Char.) 7.028 0.225 0.039 0.228

Canon 350D (HDR ICC) 4.130 1.085 0.073 0.919

Table 3.2: Colour accuracy error of HDR characterisation: (a) the training set presents the accuracy of

our characterisation models using the training data (576 patches under 5571K illumination). (b) the

test set shows the accuracy of the same characterisation models using a different test data-set (reflective

target under 2946K illumination). Accuracy compared with other methods (c): LDR characterisation

(only one target is used [ISO, 2006]) and HDR assembly using ICC profiles [Göesele et al., 2001]. ∆E00

denotes the median CIEDE2000 over all patches between measurement and prediction, Y shows the me-

dian relative differences of luminance levels, and u0v0 indicates the median relative differences between

measurement and prediction of all patches in CIE u0v0. XYZ shows the median relative differences of

CIEXYZ channels between measurement and prediction. IR filter means using the improved results with

Rosco Thermal Shield infrared-blocking filter.
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Figure 3.11: Overall results of accuracy. GretagMacbeth ColorChecker is used for testing colours.

This figure compares the median CIEDE2000 colour difference error when the camera (Canon 350D)

is characterised with three different methods (LDR characterisation with a ICC camera profile [ISO,

2006], HDR ICC profile [Göesele et al., 2001], and our HDR characterisation method. Average colour

differences in CIEDE2000 are: (LDR Char.) 6.72, (HDR ICC) 4.70, and (our method) 1.01.

Table 3.2(c) and Figure 3.12. As predicted, the achieved accuracy error is lower than with our new

method. In order to confirm repeatability, we acquired the test set (Canon 350D) a second time

under different illumination (2983K). The median ∆E00 was 0.546 over 48 patches, which is very

close to the ∆E00 of 0.480 for the first test set.

Figure 3.13 compares luminance and chromaticity of the test scene which consists of Gretag-

Macbeth charts under halogen light, acquired by three different cameras and then characterised

using our method. As shown in the top plot, the Canon 350D shows very similar performance to the

spectroradiometer, whereas the Nikons show overestimation of the luminance.

The Nikon cameras have a slightly higher error which we traced back to an inferior infrared

filter. Halogen light emits a large amount of infrared light, which caused the HDR images acquired

with the Nikon cameras to have a considerable amount of infrared glare. Using an additional

infrared blocking filter (Rosco Thermal Shield) in front of the lights yielded a median ∆E00 of 1.6

for the Nikon D100, down from 3.8 [see Table 3.2(b)]. Insofar as the averaged error level decreases

with additional infrared-blocking filters, we believe that the inferior infrared-blocking filter with the

Nikon camera causes infrared glare under tungsten light.

The bottom left plot shows chromaticity differences of the test patches. The differences are

minor, with only one colour (a red patch on the right-hand side) showing a big difference. This

colour is located outside the camera’s RGB filter gamut because these cameras use wide-band width

filters.

Our second test scene is a desk scene illuminated mainly by a fluorescent desk lamp, shown in

Figure 3.14, 3.15, and 3.16. The dynamic range of HDR radiance maps is usually much higher than

that of typical monitors and cannot be displayed directly (see Section 2.5 for more details). Since

simple linear scaling with gamma correction does not achieve satisfactory results when displaying
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Figure 3.13: Test scene consisting of GretagMacbeth charts under halogen light, acquired by three

different digital cameras and then characterised using our method. The top plot presents luminance

differences between radiometric measurements and camera measurements. In particular, the Canon

350D shows very similar performance to the spectroradiometer. Tone-mapped versions of the three

characterised images are shown on the right; the differences between them are difficult to spot. For a

quantitative comparison, see Table 3.2(b). The bottom left plot shows chromaticity differences of the

test patches in a CIE uniform chromaticity diagram. The differences are minor, with only one colour

showing a big difference, which is located outside the camera’s R/G/B filter gamut.
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(a) Direct sensor response (RAW)

(b) Absolute CIEXYZ

* (c) HDR Characterisation (white-balanced)

Figure 3.14: Each step of the HDR characterisation method. Image (a) presents the direct sensor

response and is the acquired RAW image without any white balancing. The greenish appearance is due

to the infrared filter in front of the sensor, which will be corrected by the derived mapping. Image (b)

shows the characterised CIEXYZ image (which we render using an 1:1 mapping to RGB for illustration

purposes). Each pixel value represents a measurement of radiance. Image (c) shows the final resulting

image by mapping from characterised and device-independent CIEXYZ to the display sRGB colour space.

The white point of the scene is converted to the white point of the display with the estimated reference

white.
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(a) Before HDR characterisation

(b) After HDR characterisation

(c) Difference map (mid-grey = mean) amplified by 10

Figure 3.15: Before and after comparison of HDR characterisation. Image (a) presents an HDR image

without characterisation while image (b) shows an HDR radiance map, which is characterised through

our proposed method. Image (c) is a difference map which is amplified by 10 (for a visualisation

purpose). Mid-grey presents the mean of these two images (before & after). In particular, the blue

screen and yellow books (colourful objects) present more of a difference.



3.5. Results 94

(a) Canon 350D

(b) Nikon D100

(c) Nikon D40

Figure 3.16: An HDR desk scene is characterised with our method for three different digital cam-

eras (Canon 350D, Nikon D100, and Nikon D40). Even though they are taken from slightly dif-

ferent perspectives and angles, there are only very minor colour differences between the images.

For instance, the measurements of the white tile in the scene are: (spectroradiometer in X/Y/Z)

119.63/112.50/33.07; (Canon 350D)127.00/122.00/30.50; (Nikon D100) 150.00/143.00/39.00;

(Nikon D40) 150.00/142.00/38.00.
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HDR images, tone-mapping algorithms have been introduced that compress the dynamic range in a

more suitable manner in a global, local, or image appearance fashion. We only deal with the input

side of HDR imaging in this chapter. Tone-mapping and colour appearance modelling will be dealt

with in Chapters 5 and 6. For now, we use a popular tone-mapping method [Reinhard et al., 2002]

to display our characterised images.

Figure 3.14 presents each step of the HDR characterisation. The top image shows the direct

sensor response and is the interpolated RAW image without any white balancing. As the infrared

blocking filter (cyan-greenish) is located in front of the sensor, the raw sensed image without white

balancing appears greenish. The middle image presents the characterised CIEXYZ image, which is

rendered using a 1:1 mapping for CIEXYZ to RGB. Finally, the bottom image shows the result by

mapping from characterised and device-independent CIEXYZ to the display sRGB colour space. The

estimated white point of the scene is converted to the white point of the display. Figure 3.15 com-

pares before and after a HDR characterisation. The top image shows an ordinary HDR image and

the middle image presents a characterised HDR radiance map, which is characterised through our

proposed method. The bottom image shows a difference map. In particular, the blue screen, yellow

book, and colour chart present more of a difference. Tone-mapped versions of the characterised

HDR images are shown and as can be seen in Figure 3.16, the colours in all three images are almost

identical, even though they were taken with three different cameras.

3.5.2 Illuminant Estimation

Traditional grey-world methods average trichromatic primaries first and then compute the corre-

lated colour temperature from the average. However, we have found that first computing colour

temperatures and building a weighted average of those yields better results (squared correlation

coefficient of R2 = 0.86 vs. R2 = 0.79).

Initially, we experimented with training images of a GretagMacbeth DC chart instead of natural

images. While their average colour temperatures T were highly correlated with the measured colour

temperatures Tm (R2=0.99), the derived linear transform did not generalise well to natural images.
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Figure 3.17: (a) Result of temperature estimation using the training data of natural images (all 35).

(b) Difference between temperature estimation and radiometric measurement of new test images.
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Figure 3.17(a) and (b) demonstrate that our database-based grey-world algorithm estimates

the colour temperature rather accurately for both the training as well as new natural images. These

results of our method [Kim and Kautz, 2009] compare favourably to the original grey-world and

colour-by-correlation methods [Finlayson et al., 1997]. In many cases, our colour temperature

estimation method is more accurate than the original grey-world or gamut-based model despite

using only 35 training images. Yet it allows us to compute an estimate in milliseconds (or even

less when only a subset of pixels is used). Of course, when an image deviates too much from our

training data, the colour temperature estimate is less accurate.

3.6 Discussion

HDR Characterisation Our characterisation method is applicable to HDR imaging, which is very

useful in graphics but also other scientific fields. Our mathematical method of characterisation is

rather simple — a linear transformation between colour spaces — and not different from previous

methods. However, our characterisation methodology, the combination of a new transparency colour

target, HDR imaging, and characterisation theory, solves drawbacks of previous characterisation

methods. As shown in the results (see Figure 3.11), our characterisation performance is compara-

tively better than previous methods [Pointer et al., 2001; MacDonald and Ji, 2002; Johnson, 2002;

ISO, 2006; Göesele et al., 2001], yet efficient in terms of cost and acquisition time.

However, there are some limitations of our method. The performance depends on the opti-

cal quality of the digital camera, including lens flare, vignetting, veiling glare, and the infrared

filter. For instance, the optical quality of the camera system could be improved with a fixed lens,

which provides less chromatic aberration than a zoom lens [Shortis et al., 2006]. The inaccurate

performance of Nikon cameras under tungsten lights could be improved by installing an additional

infrared-blocking filter. HDR veiling glare can be solved [Talvala et al., 2007] but acquisition com-

plexity is greatly increased. The measurement used in our method returns radiometric XYZ values,

not radiance in each wavelength. In this way, it still allows potential measurement errors with

metameric colours like other target-based models.

Illuminant Estimation In many cases, our colour temperature estimation method is more accurate

than the original grey-world or gamut-based model, even though we only used 35 training images.

Yet, it allows us to compute an estimate in milliseconds (or even less when only a subset of pixels is

used). Of course, when an image deviates too much from our training data, the colour temperature

estimate is less accurate. When the scene illuminant moves far from the locus, the performance

of our algorithm will degrade as we assume the illuminant to lie on the locus. However, in our

experience, this case does not seem to occur frequently in natural scenes. Of course, extreme cases

such as tinted light bulbs will be difficult to handle for our method. In this case, a classical white

balancing method, like MaxRGB or the general grey-world method, can be used for white balancing.

In addition, our method seems to perform well, even if the new images are not well represented in

our training database. For instance, there is no similar training image (Figure 3.10) to the example
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from Figure 3.14 and the colour chart example in Figure 3.15. Note that this estimation method is

used only for display purposes (white balancing) and can be used to estimate white point (colour)

for the CAM and that the characterisation method actually yields physically-meaningful radiance

values (not white balanced) in absolute CIEXYZ.

3.7 Summary

We have presented a new technique that can characterise HDR imaging systems, both in terms of

luminance and colour. It is more accurate than previous reflectance-based characterisation methods

and less time-consuming than monochromator-based techniques, which were designed for LDR

imaging. We have validated the accuracy of the method using three different digital cameras and

test data sets with radiometric measurements. Even though we have devised our method with HDR

imaging in mind, the same technique can also be applied to characterise LDR devices.

The proposed method enables measurement of real-world radiance as an HDR radiance map

with significant accuracy. The radiance map contains the full dynamic range of the real-world

radiance in a physically-meaningful way. In the next chapter, we will describe how physical stimuli in

the real world are perceived by the human visual system. We will describe a series of psychophysical

experiments and a colour appearance data set under high-luminance levels.
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Chapter 4

High-Luminance Colour Experiments

The previous chapter describes a method to characterise HDR imaging to digitise real-world radiance

as an HDR radiance map to a high accuracy. The method yields physically-meaningful HDR radiance

maps, equivalent to radiometric measurements of the real world. This chapter will describe how

such physical colour stimuli are perceived by the human visual system. We describe the experimental

measurement of colour appearance under high luminance levels. This data set was used to develop a

new colour appearance model (see Chapter 5) to complete colour communication in HDR imaging.

In order to quantify actual perceptual colour appearance, we have conducted a series of mag-

nitude estimation experiments. Observers are presented with a large number of coloured patches

in succession, for which they have to estimate lightness, colourfulness, and hue values. Parameters

influencing the estimates are changed across different phases of the experiment: background level,

luminance (and colour temperature) of the reference white, and ambient luminance. We designed

our psychophysical experiment in a similar way to the LUTCHI experiment, which allows us to lever-

age their existing data. However, our experiment differs from LUTCHI by including high luminance

levels of up to 16 860 cd/m2 as well as a large number of phases, where the background intensity

is varied. (The LUTCHI data set for the simultaneous contrast effect [Luo et al., 1995] is not publicly

available.)

4.1 High-Luminance Display

As mentioned in Section 2.3.3, current colour appearance data sets, mostly LUTCHI [Luo et al.,

1991a,b, 1993a,b, 1995], present the limited dynamic range of luminance. For instance, among

the data sets, only Luo et al. [1993b] describe colour appearance of transparency signboards under

high levels of luminance up to 1 272 cd/m2, where only four colour samples were used with more

than 1 000 cd/m2. Most of the colours in the LUTCHI data sets are under 690 cd/m2, which was

limited by the available display technology in the early 1990s.

In order to span an extended range of luminance levels (up to five-order magnitude, equivalent

to the working range of the eye’s cone), we built a custom high-luminance display device which is

capable of delivering up to approximately 30 000 cd/m2, see Figure 4.1. The setup consists of a

light box, powered by two 400W hydrargyrum medium-arc iodide (HMI) bulbs, transmitting light
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Figure 4.1: A custom-built high-luminance display. The display can produce a luminance of

2 200 cd/m2 when used as an LCD display and up to 30 000 cd/m2 when used with transparencies.

through a filter ensemble followed by either a 1900 LCD panel (original backlight removed) or a

diffuser onto which transparencies are placed. The light source spectrum conveniently resembles

fluorescent backlights, close to a correlated colour temperature of 6500K. Moreover, HMI bulbs stay

cool enough to keep the LCD panel from overheating (see Figure 4.2 for overall design).

4.1.1 Design and Manufacturing

The main insight of our display device is to achieve a higher luminance level by replacing the back-

light unit in an ordinary LCD display. This simple replacement creates two new issues: over-heating

of the LCD panel and calibration of the display. To avoid heat from the high-luminance light bulbs,

we first choose an HMI bulb (400W Iwasaki Electric company Ltd — Eye MT400DL) with a 400W

electronic ballast as a light source. As shown in Figure 4.4(b), the spectral power distribution of

the bulb is quite similar to an ordinary florescent light bulb [see Figure 2.8(b)], as also used in the

LUTCHI experiment [Luo et al., 1993b]. The minor differences of these spectrums are calibrated

by using an ICC profile (see Section 4.1.2 for more details). The measured CCT of the bulb was

6494K, corresponding to CIE D65 illuminant. In addition, the HMI-type bulb produces more energy

toward the visible spectrum, and relatively lower energy in the infrared wavelengths, compared to

filament-type halogen bulbs. Consequently, the HMI bulb produces much less heat than other types

of bulbs. However, liquid crystals are rather sensitive to heat. Any heat energy can affect crystal

liquids to close the pixel by turning the direction of the liquid crystals (becoming black). Generally,

LCD panels function under a temperature of 50◦C. For this reason, although HMI bulbs produce less

energy than halogen bulbs, heat ventilation was required to ensure this LCD panel work properly at

under 45◦C (ensured by measuring with a thermometer).

Peak luminance (and with it the luminance of the reference white, as well as of all colour
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LCD panel

(or transparency)

& Diffuser

LCD controller

Neutral density or

colour control filter

UV filter

Fire glass
Lid

(2X) Fans

(2X) Ballasts

        for HMI bulbs

HMI bulbs

(2 X 400W)

(2X) Reflectors

Air

Heat 

ventilation

Figure 4.2: Design of the high-luminance display. From the left, an LCD panel or transparency is

placed to produce colour stimuli. A slot is made for neutral density or colour control filters to control

luminance and colour temperature of the light source. Double-glazed fire glass is installed to isolate the

heat energy against the LCD panel. Two 400W HMI bulbs are used as a light source. Two 400W ballasts

and two fans are located outside the box. Heat is vented from the top and the back sides of the display.

A thermometer is installed to check the temperature of the inner chamber (keeping the box temperature

at approximately 45◦C).

(a) Lighting panel (b) LCD panel and its controller (c) Fans and electronic ballasts

(e) Fire glass, filters, and LCD (f) Overall top view (g) Front view without LCD

Figure 4.3: Compartments of the high-luminance display. Image (a) presents the inner back side that

contains two HMI bulbs, two fans, their power supply, and electronic wires. These elements (except

the bulbs) are covered with aluminium tin foil to improve energy efficiency. Image (b) shows the LCD

panel, its power supply, and its VGA controller. Image (c) is a photograph of the outer back side panel.

To protect the ballasts against heat, two electronic ballasts that produce flicker-free light are installed

outside the display. From the top of the image (e), the double-glazed fire glass is installed to isolate

infrared light and heat energy from the LCD panel, then (3⇥) UV filters are installed to avoid ionisation,

then finally the LCD panel unit. Image (f) shows overall top view before installing the top panel. Image

(g) presents a front view of the display before installing the LCD panel.
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samples) is controlled by placing additional neutral density (ND) filters into the light box (which

preserves amplitude resolution). Combinations of different ND filters creates peak luminances

of approximately 50, 125, 500, 1 000, 2 200, 8 500, and 16 860 cd/m2 used in our experiment.

In addition, we can modify the colour temperature of our light source by placing Rosco colour-

temperature-changing filters inside the light box. Our experiments use four different colour temper-

atures: 2000K, 6500K, and 8000K with the LCD, and 6000K with transparencies.

We used a Samsung SM931C 1900 SXGA TFT LCD panel, which has a resolution of 1280x1024

(response time: 2ms) and a contrast ratio of approximately 1:1000 (according to its specification).

When used with the LCD, the maximum displayable luminance is 2 250 cd/m2 (similar to the Dolby

HDR display [Dolby, 2008]). Owing to the 8-bit LCD, the amplitude resolution is only 256 steps (less

than for a real HDR display [Seetzen et al., 2006]). However, this is not critical, as the experiment

only requires sparse sampling of the colour space. For transparencies, the maximum luminance

reaches 30 000 cd/m2, with virtually arbitrary contrast and amplitude resolution.
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Figure 4.4: Colour gamut and spectral power distribution of the high-luminance display. In Plot (a),

a red triangle presents the gamut of the raw colour primaries, and a orange triangle shows the gamut

of characterised primaries of our high-luminance display. Plot (b) and (c) show measured spectral

power distributions of the HMI bulb and the calibrated display. The light source presents undesirable

strong peaks in the middle of its spectrum, which causes viewing angle dependency in the final display.

Therefore, participants’ viewing angle was fixed perpendicular to the centre of the display to avoid the

colour appearance changes by viewing angle.
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4.1.2 Calibration

Using a Specbos Jeti 1200 spectroradiometer, we colour-calibrated the LCD version of our display

to match an sRGB colour gamut and a gamma of 2.2 by generating a ICC [2004] profile (see Ap-

pendix A.4 for radiometric measurements for device characterisation), but our light bulbs produce a

smaller colour gamut toward the red primary compared to sRGB colour space [see Figure 4.4(a)].

Hence, the display produces a colour space similar to sRGB, but with much higher luminance levels.

In addition, when using the transparent film panel, the display covers higher levels of luminance and

a wider colour gamut beyond the LCD panel (see Figure 4.6). We further measured the spectra of

all displayed colour patches (LCD and transparencies), as well as background and reference white.

In addition, the reference white was re-measured at the beginning (after the HMI bulbs output had

stabilised after a few hours) and at the end of each day to ensure repeatability. Even though HMI

light bulbs are known to change colour temperature over their lifetime (approximately 0.5K for each

hour), over the two-week period of our experiments, we recorded only an insignificant variation of

about 3% in luminance and a 1% decrease in colour temperature.

4.2 Stimuli

The setup for recording our perceptual measurements is adapted from the LT phases (cut-sheet

transparencies) of the LUTCHI experiments [Luo et al., 1993b]. A participant is asked to look at a

colour patch presented next to a reference white patch and a reference colourfulness patch (with a

colourfulness of 40 and lightness of 40), as shown in the centre of Figure 4.5.

The viewing pattern is observed from 60 cm distance and normal to the line of sight, such that

each of the approximately 2⇥2cm2 patches covers approximately 2◦, and thus the whole display

approximately 50◦ in the field of view of the participant (with the test colour patch being in the

centre). The background is black or gray, with 32 random decorating colours at the boundary, sim-

ulating a real viewing environment. We selected 40 colour patches as stimuli, carefully chosen to

provide a good sampling of the available colour gamut and to provide a roughly uniform luminance

sampling. The 40 colour patches, background luminance level, and reference white patch were

measured by a spectroradiometer before taking experiments with participants (see Figure 4.7 and

Table 4.1 and Appendix A.6 for physical/perceptual measurements). Figure 4.6 shows the distribu-

tion of these 40 patch colours for each device. The patch sets for the LCD and transparency setup

are different, as it is neither easy to match their spectra nor necessary for the experiment.

Since the perception of lightness, colourfulness, and hue is strongly correlated with parameters

such as luminance range, reference white, background level, and surround condition [Stevens and

Stevens, 1963; CIE, 1981; Luo et al., 1991a; Luo and Hunt, 1998; Hunt et al., 2003], our study

explores relevant slices of this high-dimensional space. We partition the experiment into different

phases, with a specific set of parameters in each phase (see Table 4.1). We primarily focus on the in-

fluence of luminance range and background level on colour perception as these two dimensions are

known to have the strongest perceptual influence [Luo et al., 1991a]. We performed experiments
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BackgroundEnter numbers here

Figure 4.5: The viewing pattern observed by participants (made with the C/C++ in Microsoft Visual

Studio). Participants were presented with a series of test colour samples in the centre of the screen. They

entered three estimated magnitude numbers (lightness, colourfulness, and hue) by using a keyboard

numeric pad. Reference white is located to the left and below the test colour. The reference white patch

is used for lightness estimation on a relative scale. Reference colourfulness is located to the right below

to provide an anchor point when observers estimate colourfulness magnitude on an absolute scale. The

adapting field (10-degree viewing angle) is used for measuring the luminance adaptation level of the

eye. All other screen area is background, which includes decorating colours around edges to simulate

the real-world viewing environment. Finally, areas outside of the screen are assumed to be surround,

including the luminance level of the room.
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Figure 4.6: Colour coordinates of the 40 LCD and transparency patches (CIE u0v0).
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Figure 4.7: Our high-luminance display device is placed in a dark room where colour patches were mea-

sured by a spectroradiometer (physical quantities) and estimated by trained observers (corresponding

perceptual quantities) in colour experiments.

up to a peak luminance of 16 860 cd/m2 (corresponding to white paper in noon sunlight); higher

luminance levels were abandoned as they were too uncomfortable for the participants. As previous

colour experiments have already covered low luminance, we conducted only a few low-luminance

experiments (phases 1–5 in Table 4.1) to verify consistency.

4.3 Experiments

4.3.1 Experimental Procedures

A crucial point to psychophysical measurements conducted through magnitude estimation is that

each observer clearly understands the perceptual attributes being judged. Each observer completed

a 3-hour training session with the actual viewing pattern (using a different set of colour patches)

to develop a consistent scale for each of the required perceptual attributes (lightness, colourfulness,

and hue). For data compatibility, the same scaling units and instructions (see Appendix A.5) were

used as in the LUTCHI data sets [Luo et al., 1993b]. We employed six fully trained expert observers,

all of whom were research staff from our institution, who had passed the Ishihara and City University

vision tests for normal colour vision. At the beginning of each phase, observers spent 5 minutes

for high luminance and 30 minutes for dark luminance adapting to the viewing conditions. Each

observer spent around 10 hours on the experiment in a dark room, usually distributed over two

(a) (b)

Figure 4.8: Viewing pattern observed by participants [(a) with the LCD panel and (b) with trans-

parency].
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Observers Phases Samples Sequences Estimates

Numbers 6–7 60 105 9,450 28,350

Phase Light Type Peak Lumin. Backgrnd. Ambient

1 5935K LCD 44 cd/m2 24% dark

2 6265K LCD 123 cd/m2 21% dark

3 6265K LCD 494 cd/m2 0% dark

4 6265K LCD 521 cd/m2 24% dark

5 6197K LCD 563 cd/m2 87% dark

6 6197K LCD 1 067 cd/m2 0% dark

7 6197K LCD 1 051 cd/m2 22% dark

8 6390K LCD 2 176 cd/m2 0% dark

9 6392K LCD 2 189 cd/m2 12% dark

10 6391K LCD 2 196 cd/m2 23% dark

11 6387K LCD 2 205 cd/m2 55% dark

12 6388K LCD 2 241 cd/m2 95% dark

13 7941K LCD 1 274 cd/m2 21% dark

14 1803K LCD 1 233 cd/m2 19% dark

15 6391K LCD 2 201 cd/m2 23% average

16 5823K Trans. 8 519 cd/m2 6% dark

17 5823K Trans. 8 458 cd/m2 21% dark

18 5921K Trans. 16 860 cd/m2 5% dark

19 5937K Trans. 16 400 cd/m2 22% dark

Table 4.1: Summary of the 19 phases of our experiment. In each phase, 40 colour samples are shown.

Each participant totalled 2 280 estimations, which took around 10 hours per participant.
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days (see Figure 4.8 for snapshots of the experiments).

After the adaptation time, each colour sample was shown in a random order and the partici-

pants had to estimate three perceptual attributes: lightness, for which observers used a fixed scale

from 0 (imaginary black) to 100 (reference white); hue, where observers were asked to produce a

number indicating the hue using neighbouring combinations among four primaries — red-yellow

(0–100), yellow-green (100–200), green-blue (200–300), blue-red (300–400); and colourfulness,

where observers used their own open scale, with 0 being neutral and 40 equaling the anchor colour-

fulness. The participants entered the data using a keyboard. After each phase, participants were

asked to judge the colourfulness of the reference colourfulness patch of the next phase relative to

the previous one in order to allow inter-phase data analysis.

4.3.2 Colour Appearance Attributes

Colour appearance attributes can be quantified in either relative or absolute scales. An interesting

question in designing a psychophysical experiment is which type of scale is a better choice in describ-

ing colour attributes. Brightness and colourfulness are attributes on absolute scales; lightness and

chroma are relative attributes with respect to the maximum levels of brightness. Hue is a relative

attribute describing the proportion of primary colours (see Section 2.3.1 for colour terminology),

and hence a partitioning experiment is the only available method for this attribute.

Generally, a partitioning experiment provides more convenience than magnitude estimation.

The reason is that magnitude can only be estimated when considering the memory of the previous

Red (a*+)
(H: 0-400)

Yellow (b*+)
(H: 100)

Green (a*-) 
(H: 200)

Blue (b*-)
(H: 300)

Q1Q2

Q3 Q4

Figure 4.9: Perceptual colour primaries. Imagine that a participant observes a test colour (suppose

purple). He chooses one of the quadrants (Q4) that best matches the test colour. He decides the

proportion of the nearest primaries (blue and red) on a percentage scale (like 60% of blue and 40% of

red) that make up the test colour. Then, he adds the nearest small primary quadrature value (blue =

300) on the decided proportion (300 + 60) to obtain the hue quadrature value (360) of the test colour.
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trial (often assisted with an anchor point). Obtained data is on a subjective arbitrary scale, which

depends on each participant individually. Therefore, if partitioning is possible, relative scaling is a

better choice to improve the efficiency of the experiments. The question is whether relative scaling

is possible in colour appearance experiments. Measuring lightness is achievable by providing a

reference maximum brightness (reference white). For instance, each participant can be asked how

bright the patch is with respect to the reference white. The participant can estimate a level of

brightness on a percentage scale without difficulty. Thus, we choose lightness scaling over brightness

scaling to allow relative scale assessment.

However, scaling chroma is questionable as Kwak [2003] and Fairchild [2005] suggested when

commenting on the LUTCHI experiments. Following the colour attribute definition by Hunt [1998]

(see Section 2.3.1 for definitions), chroma is a relative judgement of colourfulness with respect

to reference white, but it is a very difficult task to normalise a judged colourfulness intensity by

the brightness level of the reference white. Therefore, simply asking for colourfulness intensity

(ignoring maximum brightness level) is more intuitive than asking for normalised colourfulness. In

this way, the colourfulness judgements become easier to understand for participants. For saturation,

we would need to ask participants to judge their own assigned brightness level for a given test colour

and, accordingly, to judge the colourfulness of the patch given this assigned brightness level. This

includes the judgements of two different colour appearances. Consequently, it is better to ask for

colourfulness directly than to ask for either chroma or saturation.

Therefore, we asked the participants directly to judge the absolute quantity of colourfulness

with the help of an anchoring reference colourfulness patch, which was also used in previous

LUTCHI experiments [Luo et al., 1991a, 1993a].

4.3.3 Inter-phase Colourfulness

In our experiments, the reference colourfulness patches were chosen to have a colourfulness of 40

according to the CIELAB colour space. It should be noted that the reference colourfulness is only

meant to anchor the estimates, and as such any colour or any value can be chosen. To allow com-

parisons between different phases, we asked participants to rate the colourfulness of the reference

colourfulness patch based on the reference colourfulness patch from the previous phase (memory

experiment). The results are shown in Figure 4.10, where (a) plots the averaged perceived colour-

fulness of the reference colourfulness for different luminance levels (44–16 400 cd/m2) with a fixed

background (20%), and (b) plots perceived reference colourfulness for different background levels

(0–95%) with a fixed luminance level (2 200 cd/m2). Averaged perceived colourfulness increases

up to 62.12% in proportion to the logarithm of luminance and decreases up to 31.73% in proportion

to the luminance levels of background. The average CV of these colourfulness memory experiments

was 20.93%. In particular, the variation of the colourfulness change by background is higher than

that change by luminance; the slope of change by background is also smaller than that of lumi-

nance. Our results show that the luminance level has more impact than the background level on

colourfulness perception. Finally, as the participants estimate colourfulness by using a same an-
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chor point (colourfulness: 40), we can scale the perceived colourfulness by the change of reference

colourfulness between phases.
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Figure 4.10: Plot (a) shows the average perceived colourfulness of the reference colourfulness patch for

different luminance levels (44–16 400 cd/m2) with a fixed background (in 20%). Plot (b) presents the

perceived reference colourfulness for different background levels (0–95%) with a fixed luminance level

(2 200 cd/m2).

4.3.4 Observer Repeatability and Variation

The soundness of obtained colour appearance data was tested by evaluating variation at differ-

ent time (repeatability) and overall CV errors in all phases (accuracy) [see Equation (2.13) for CV

calculation]. Three observers repeated two phases (phases 7a and 7b) of the original experiment

(phase 7) in order to judge long- and short-term repeatability. Phase 7 was conducted in the first

week of December in 2008; the other two phases (7a and 7b) were conducted a month later. The

average CV of short-term repeatability between two different experiments (7a and 7b) was 10.06%

for lightness, 17.23% for colourfulness, and 7.22% for hue (see Figure 4.11 for qualitative compar-

ison). Comparing one-month different experiments (phases 7 and 7a), the average CV of long-term

repeatability was 11.83% for lightness, 22.82% for colourfulness, and 11.42% for hue. In addition,

we tested overall observer variation of all phases by calculating CV error. The average CV of all

the observers in all phases was 14.89% for lightness, 31.91% for colourfulness, and 9.37% for hue

(see Table 4.2 for comparison). In particular, the colourfulness estimation had higher variation than

other appearances, but this was also observed in previous colour experiments [Luo et al., 1991a,b,

1993a,b, 1995]. For instance, in the LUTCHI data sets phases of lightness varied 11–18% (CV),

colourfulness phases varied 13–27%, and hue phases varied 4–7%. The LUTCHI data sets present

similar variations to ours.

Figure 4.11 shows a qualitative comparison of two different experiments (phase 7a and 7b) to

measure short-term repeatability. It represents later estimations of the same colour stimuli against

former estimations. Although small variation is observed in these two phases, data is scattered

along the diagonal of these plots (a straight line on the diagonal indicates an ideal match). The

later estimates (the Y axis) of lightness, colourfulness, and hue present the same trend compared to

the former estimates (the X axis), and no bias nor skewness is observed.
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As shown in Table 4.2, hue estimates were more consistent than lightness and colourfulness es-

timates. Lightness estimates were more consistent than colourfulness estimates. Similar trends are

also observed in the LUTCHI data sets. In particular, the largest variation was observed in colour-

fulness estimation. In post-experiment interviews, all the participants reported that colourfulness is

the most difficult to judge and that open-end magnitude estimation (colourfulness) is more difficult

than simple partitioning (lightness and colourfulness). For the larger variation of colourfulness, we

could trace back to the difficulty of magnitude estimation, but the quality of our appearance data is

consistent with previous experiments.

Observer Variance Lightness Colourfulness Hue

Short-term repeat. 10.06% 17.23% 7.22%

Long-term repeat. 11.83% 22.82% 11.42%

All phases 14.89% 31.91% 9.37%

Table 4.2: Observers repeatability and all-phases variation.
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Figure 4.11: The repeatability of observers was tested by using stimuli in phase 7. The X axis represents

the estimations of lightness, colourfulness, and hue in phase 7a. The Y axis shows these estimations in

phase 7b that was repeated after phase 7a.

4.3.5 Differences to Previous Experiments

Previous perceptual attribute correlates have been derived mostly from the LUTCHI data sets be-

cause it is publicly available (with one addition: an appearance data set for the simultaneous con-

trast effect [Luo et al., 1995]). The LUTCHI data sets comprise eight different viewing conditions:

high-luminance reflective paper (R-HL), low-luminance reflective paper (R-LL), low-luminance re-

flective paper comparing lightness with brightness (R-VL), reflective textile (R-Textile), CRT display

(CRT), transparency (LT), 35mm slide projector film (35mm), and supplemental reflective paper

and transparency measurements (BIT) [Luo et al., 1991a,b, 1993a,b, 1995, 1997], but were really

geared towards reflective surfaces and low-luminance conditions. Most of their experiments were

carried out with a maximum luminances of up to 690 cd/m2, except the cut-sheet transparency con-

dition [Luo et al., 1993b], which included a total of only four colour patches (used in two different
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phases) with a luminance over 1 000 cd/m2.

It should be mentioned that there are some distinct differences in our experiments to previous

experiments. The LUTCHI data set was geared towards reflective surfaces and low-luminance condi-

tions — no data are available for extended luminance levels. As a result, colour appearance models

derived only from LUTCHI cannot robustly model colour appearance under higher luminance lev-

els. This can be seen in Chapter 6. In addition, data sets used in other experiments are not publicly

available.

In order to verify experimental consistency with the LUTCHI data sets, we conducted a few

low-luminance experiments (phases 1–5 in Table A.36) as previous colour experiments have already

covered low luminance. Figure 4.12 compares one low-luminance phase between LUTCHI (phase

6 in [Luo et al., 1991a] – on a CRT display with a peak luminance of 40.5 cd/m2) and ours [phase

1 on our high-luminance display with neutral-density (ND) filters, producing a peak luminance of

44 cd/m2]. Although both experiments were conducted on different display devices (a CRT and an

ND-filtered high-luminance display) and different viewing conditions (unknown in LUTCHI), the

quantified values of colourfulness and hue in both data sets present a very similar trend [see Plots

(b) and (c)]. Lightness perception shows some differences in the perceived lightness of middle-

tone colours [see Plot(a)]. We explain the differences with the fact that lightness perception is

considerably changed by medium type [Luo et al., 1993b] (see Chapter 5 for more details) and with

the (unknown) differences in viewing conditions.

4.4 Data Analysis

For lightness and hue estimates, all observers had to use the same numerical scale with fixed end

points. Given minimum and maximum values to judge the lightness and hue attributes, this forced

the observers to use a partition technique rather than pure magnitude estimation [Stevens, 1971].

Consequently, we can compute the arithmetic mean between all observers in order to find the central

tendency measure for partitioning. Note that for hue, the scale is circular and care needs to be taken

when averaging. If an observer’s response were a mixture of R-Y and B-R, one of the responses was

moved to the other end of the scale between 0 and 400, e.g., in case of 20 and 390, 390 is converted

to -10, and averaged with 20.

For colourfulness scaling, the observers applied their own open-end arbitrary scale (pure mag-

nitude estimation). Colourfulness estimates, on absolute scales, were analysed, following [Bartle-

son, 1979; Pointer, 1980]. According to [Stevens, 1971], the sensation of a signal always presents

a power function. Therefore, the appropriate central tendency measure for magnitude estimation is

the geometric mean, but only after relating the observers’ responses to each other (since observers

use their individual scales). We follow the same method as [Pointer, 1980] and map each observer’s

responses to the mean observer.

Each observer produces their own scale unit of sensation b in their own attribute a. The ob-
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Figure 4.12: Qualitative comparison between LUTCHI and our appearance data. This figure compares

low-luminance phases in LUTCHI (phase 6 in [Luo et al., 1991a] – on a CRT display) and ours (phase 1

on our high-luminance display with ND filters). Plot(a) presents perceived lightness against normalised

incident luminance. Plot(b) and (c) show perceived colourfulness and hue of our data and LUTCHI data

against CIELAB chroma C* and hue H* (scaled to 400). For qualitative comparison of colourfulness and

hue (which are not measurable in a physical sense as is luminance), we use CIELAB colour space instead

as the CIELAB space does not account for any viewing environmental conditions (see Section 2.3.4 for

more details). In Plot(a), lightness perception presents differences in the perceived lightness of middle-

tone colours. The differences are explained by the fact that lightness perception is considerably changed

by medium type, i.e., LUTCHI data here [Luo et al., 1993b] employs a CRT display and our measurement

uses an LCD display. The different spectral characteristics of these media causes different perception of

lightness due to unknown differences in viewing conditions.

servers response magnitude R can be modelled [Stevens, 1971] as follows:

R= aSb , (4.1)

where S is the stimulus magnitude. The observer’s scale and attribute can be mapped into a common

scale (geometric mean according to [Stevens, 1971]). When the common geometric mean responses

R of all the observers to given stimuli S is computed, each individual observer’s scale and attribute,

the constants a and b, can be found by least-squares fitting in log-log domain:

log10 R= b log10 S+a. (4.2)

This enables us to correct each observer’s data to a common scale. Then, the arithmetic mean

of the converted data turns out to match to the geometric mean of original data. As a result, each

individual colourfulness measurement is able to be compared with others for arithmetic comparison.

The CV was mainly used as a statistical measure to investigate the agreement between any two sets

of data [see Equations (2.12) and (2.13)].

4.5 Colour Appearance Phenomena

Before describing our colour appearance model in the next chapter, this section will describe the

important findings and trends observed in our data. The findings of our experiments agree with
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those of previous experiments (see Section 2.3.3 for more details on colour appearance phenom-

ena). However, our experiments quantify known colour appearance phenomena in the full range

of the human visual system (five orders of magnitude). Colour appearance data sets have higher

variation than other scientific measurements [Luo et al., 1991a] as they are commonly derived via

the magnitude estimation method. Therefore, the central tendency of colour appearance attributes

is broadly accepted and used in colour appearance modelling as opposed to the student’s t-test.

The following subsections describe qualitative and quantitative findings from our experiments.

The observed colour appearance phenomena are presented by plotting them against CIELAB colour

appearance. As mentioned earlier, the lightness, chroma, and hue coordinates in CIELAB are as-

sumed here to be physical measures such that they do not take into account the viewing environment

(see Section 2.3.4 for more details). Physical measurements from the spectroradiometer in CIEXYZ

are simply transformed into L*, C*, and H* (scaled to 400) coordinates in CIELAB for comparison

with perceptual measurements.

4.5.1 Luminance Effect on Lightness

Perceived lightness is plotted against physical measurements in Figure 4.13. The Y axis represents

perceived lightness, and the X axis shows the lightness value L* (in CIELAB) of the incident light.

40 colour patches were observed by participants with a variation in luminance. Other viewing

conditions were fixed: background ratio (23%), colour temperature (6197K), and a dark surround.

Luminance (controlled by ND filters in front of the light source) is set at 44, 123, 397, 1 051,

and 2 196 cd/m2. We found that the perceived lightness of the medium colours (not dark and not

bright) increases when the luminance level increases and that the shape of the perceived lightness

curve changes due to the luminance difference. The average perceived lightness increases with

increased peak luminance, see Figure 4.13(b). Lightness in our data shows a similar trend to the

LUTCHI experiments. In our data, the average lightness of the 40 colours increases by 5.26% per

magnitude of peak luminance [log(peak luminance)]. LUTCHI data sets show that darker colours

appears lighter under higher luminance by approximately 4%.

4.5.2 Luminance Effect on Colourfulness

Perceived colourfulness is plotted against physical measurements in Figure 4.14, using the same

viewing environment as in Section 4.5.1. The Y axis presents perceived colourfulness, and the X

axis shows the chroma value C* (in CIELAB) of the incident light. Colourfulness shows a similar

trend. We note that the perceived colourfulness of the bright colours mainly increases. The average

perceived colourfulness increases with increased peak luminance (fixed background ratio), as shown

in Figure 4.14(b). At higher luminance levels perceived colourfulness increases. It is shown that

the slope of the perceived colourfulness trends changes due to the peak luminance. In our data,

the average colourfulness of the 40 colours increases by 13.09% per magnitude of peak luminance

[log(peak luminance)]. The LUTCHI data sets [Luo et al., 1993b] show that colourfulness increases

under higher luminance by approximately 6%.
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Figure 4.13: (a) Lightness perception for different luminance levels (phases 1, 2, 4, 7, and 10).

(b) Average lightness perception for different luminance levels.
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Figure 4.14: (a) Colourfulness perception for different luminance levels (phases 1, 2, 4, 7, and 10).

(b) Average colourfulness perception for different luminance levels.
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Figure 4.15: (a) Hue perception for different luminance levels (phases 1, 2, 4, 7, and 10).

(b) Average hue perception for different luminance levels.
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4.5.3 Luminance Effect on Hue

Perceived hue is plotted against physical measurements in Figure 4.15. The same colour patches

are observed by observers with variations in luminance. Other viewing conditions are the same

as in Section 4.5.1. As shown in this qualitative comparison, the perceived hue does not present

comparative variation with changes in luminance levels. The CV of the average perceived hue is

only 1.98. Hue appears constant with regards to variations in luminance, which is consistent with

previous data (LUTCHI), see Figure 4.15.

4.5.4 Background Effect on Lightness

Figure 4.16 presents the perceived lightness trend with variations in the background luminance.

The peak luminance level is fixed at 2 241 cd/m2, but the background ratio is changed to 0%

(black), 12%, 23%, 55%, and 95% (white). The colour temperature was fixed at 6197K, and the

surround was set to dark. Participants judged 40 colour patches against different backgrounds.

The perceived lightness comparatively changes due to the background luminance. We note that

the perceived lightness of all the colours clearly increases on the dark background. The average

perceived lightness increases with decreased background luminance of 8.43% per magnitude of

background luminance [log(background luminance)]. We note that in case of a black background

(0% background ratio), the shape of the perceived lightness curve is also changed.

4.5.5 Background Effect on Colourfulness

Perceived colourfulness is presented with variations in background luminance in Figure 4.17. Other

viewing conditions were set as in Section 4.5.4. We found that the perceived colourfulness of

the medium-dark colours increases. Variation of the perceived colourfulness increases accordingly;

however, the slope of the perceived colourfulness trends is not changed by the background ratio.

The average perceived colourfulness increases with decreased background luminance by 6.48% per

magnitude of background luminance [log(background luminance)].

4.5.6 Background Effect on Hue

Figure 4.18 presents the perceived hue with variation of the background ratio. Peak luminance,

colour temperature, and surround were fixed as in Section 4.5.4. We found that the perceived hue

does not show strong variation against different background ratios. The CV of the average perceived

hue is only 1.82, see Figure 4.18(b).

4.5.7 Colour Temperature Effect on Colour Appearance

Figure 4.19 presents the perceived colour appearance with variations in colour temperature of the

light source. 40 colour patches were presented against a background of ratio 23%, a fixed peak

luminance of 1 233 cd/m2, and a dark surround. The colour temperature of the light source was

changed by using Rosco colour-temperature changing filters (1803, 6197, and 7941K). We found

that perceived lightness presents small changes of 7-9% with variations in colour temperature and

that perceived colourfulness presents also small changes of 14-18% with temperature variation.

However, perceived hue under 1803K (yellowish) presents a different CV from others (6197 and
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Figure 4.16: (a) Lightness perception for different background levels (phases 8, 9, 10, 11, and 12).

(b) Average lightness perception for different background levels.
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Figure 4.17: (a) Colourfulness perception for different background levels (phases 8, 9, 10, 11, and

12). (b) Average colourfulness perception for different background levels.
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Figure 4.18: (a) Hue perception for different background levels (phases 8, 9, 10, 11, and 12). (b)

Average hue perception for different background levels.
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7941K) of 37% (both with two others). The CV value of perceived hue between 6197K and 7941K

is 5.86%. In the low colour temperature (1803K), yellowish colours appear more reddish, and

bluish colours appear more reddish. As observed in [Li et al., 2002], our experimental data sets also

show inconsistent chromatic adaptation in perceiving hue under different colour temperatures and

that perceived colourfulness also changes depending on the colour temperature of the light source.

4.5.8 Surround Effect on Colour Appearance

The perceived colour appearance under different surrounds (dark and average – 0% and 20% of the

peak luminance) is presented in Figure 4.20. 40 colour patches were observed by the participants

under a peak luminance of 2 196 cd/m2, a background ratio of 23%, and a correlated colour temper-

ature of 6197K. In dark surround settings (0%), we used a dark room with all indoor lights turned

off. In average surround settings (20%), florescent-type bulbs illuminated the environment in order

to make the surround 20% as bright as the peak luminance [Moroney et al., 2002]. Participants

judged colour appearance in average bright viewing conditions. We note that perceived lightness,
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Figure 4.19: Colour perception for different colour temperatures (phases 14, 7, and 13).
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colourfulness, and hue are almost identical [CV: (L) 9.16%, (C) 14.70%, and (H) 9.07% — less

than the short-term repeatability] between the two different surrounds. For the minor changes in

perceived hue, we suggest that the cause was the difference in colour temperature of the surround

light (3323K) and viewing display (6197K).
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Figure 4.20: Colour perception for different surrounds (phases 7 and 15).

4.6 Discussion

In order to achieve high levels of luminance, we built a novel display device by utilising two HMI

bulbs, which substitute the fluorescent back-lit unit in an LCD display. Its maximum level of lumi-

nance is approximately 30,000 cd/m2. However, we performed experiments up to 16,860 cd/m2

and abandoned higher levels of luminance as the luminances were too uncomfortable for the par-

ticipants.

We mainly measured the impact of luminance and background level changes on colour per-

ception. Hence, our experimental data contains limited variation of media and viewing conditions.

For the variation of appearance on different media, LUTCHI data can be integrated as our data is

compatible with LUTCHI data.

4.6.1 Perceived Lightness Appearance

The perceived lightness of the medium colours (not dark and not bright) increases when the lumi-

nance level increases. The average perceived lightness increases with increased peak luminance.

This means that the shape of the perceived lightness curve changes due to the peak luminance. This

was also shown by Stevens and Stevens [1963], and is called the Stevens effect. They attempted to
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model the perceived lightness curve as a power function. However, the perceived lightness turns

out to have more complex trends than a simple power function. This Stevens-influenced modelling

is observed in other colour appearance models, e.g., CIELAB, LLAB, RLAB, and so on. We model this

luminance effect on lightness in a more rigorous way (see Chapter 5 for more details) than others.

The perceived lightness of all the colours clearly increases with a darker background. When the

background luminance level increases, the average perceived lightness decreases (of all the colours),

as shown by Bartleson and Breneman [1967]. This effect is called the simultaneous contrast effect.

This phenomena is also modelled in our colour appearance model (see Chapter 5).

4.6.2 Perceived Colourfulness Appearance

Colourfulness shows a similar trend to lightness. The perceived colourfulness of brighter colours

increases. At higher luminance levels, perceived colourfulness increases, which is known as the

Hunt effect [Hunt, 2004]. This shows that the slope of the perceived colourfulness trends changes

due to the peak luminance.

The perceived colourfulness of the medium-dark colours mainly increases, which was also in-

dicated by the participants in post-experiment interviews. The average perceived colourfulness

increases against a darker background, as shown in the simultaneous contrast effect [Albers, 1963].

These two colourfulness phenomena are also modelled in our colour appearance model (see Chap-

ter 5).

4.6.3 Perceived Hue Appearance

Hue is generally constant with regard to variation in luminance, background, and surround, which is

consistent with previous data. However, perceived hue presents a variation in colour temperature of

the light source. Reddish light (low colour temperature) makes colours appear slightly more reddish,

and greenish-and-bluish light (high colour temperature) makes colours appear slightly more bluish.

Lesser degrees of adaptation occurred under the low colour temperature (1803K), following Li et al.

[2002]’s findings. These inconsistent colour constancy phenomena are modelled through a process

called chromatic adaptation modelling (see Chapter 5).

4.7 Summary

Current display devices cannot display five-orders of magnitude of luminance and therefore can-

not cover the working dynamic range of the human visual system. Hence, we built a new high-

luminance display device, which enables us to conduct colour appearance experiments under high

luminance levels. Our experiments followed the methodology of previous LUTCHI colour experi-

ments; therefore, our data set is compatible with in the existing colour appearance data. However,

our colour appearance data set extends the range of luminance up to 16 860 cd/m2.

We summarise important findings and trends observed in our experimental data. If the lumi-

nance level increases, then lightness and colourfulness both increase. This confirms the Stevens and

Hunt effects. In contrast, if the background luminance level increases, lightness and colourfulness

both decrease, confirming the simultaneous contrast effect. Most of our findings are consistent with
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the LUTCHI data sets, and similar trends can be observed in both data sets. However, the LUTCHI

data sets quantify these colour appearance phenomena mostly under approximately 690 cd/m2, but

our data set covers luminance up to 16 860 cd/m2. Although our colour appearance data includes

less various media than the LUTCHI data sets and less variation in colour temperature, it covers

the five-orders of magnitude of luminance. The range of the experimental data corresponds to the

working range of the human visual system. This experimental contribution enables us to derive a

new colour appearance model for an extended range of luminance levels. Accordingly, our numer-

ical model covers the full range of colour perception of the human visual system. The next chapter

describes our colour appearance model.
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Chapter 5

A Colour Appearance Model for Extended

Luminance Levels

A colour appearance model (CAM) converts from physical measurements to perceptual quantities.

This conversion differs amongst existing colour appearance models and involves numerical transfer

functions that are matched to psychophysical observation data. These data are, in general, not pub-

licly available and only implicitly embedded into CAMs derived from these data. The only available

psychophysical data is from the LUTCHI experiments. Luo et al. [1991a,b, 1993a,b, 1995] mea-

sured human perception based mainly on reflective materials and low dynamic range conditions.

The luminance level of these measurements is lower than that of many everyday situations in reality.

For this reason, we conducted our own high-luminance colour experiments. These experiments, ex-

plained in the previous chapter, yielded a novel measurement of perceived colour appearance under

extended luminance levels (up to 16 860 cd/m2). The dynamic range of the acquired appearance

data set is close to that of the human visual system (about five-order magnitude). This enables us

to numerically derive a new colour appearance model for high-dynamic-range luminance.

In this chapter, a novel colour appearance model is presented to improve accuracy in predicting

human colour perception. This model is able to predict not only image appearance as can other

colour appearance models, but also real-world observation of the human visual system. The following

section describes a forward appearance model and is followed by an analytical inverse model. Both

models will be used to complete a cross-media colour reproduction technique for high-dynamic-

range imaging in the next chapter.

5.1 Data Sets

For the developments of our colour appearance model, we use the maximum likelihood approach,

which derives a model based on training data without taking prior information. However, perfor-

mance on the whole training set is not a good indicator of predictive performance on the seen data

due to the problem of over-fitting [Bishop, 2006]. Insofar as we have 19 phases, our approach is

to use some of the available phases as input to a range of models, and to compare the models with

independent phases as a validation set. We subgroup certain phases with four different criteria:
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luminance-varying phases (1, 2, 4, 7, 10, 17, and 19) — group L, background-varying phases (8, 9,

10, 11, and 12) — group B, colour temperature-varying phases (10, 14, and 15) — group T, and

surround-varying phases (10, 15) — group S. For modelling distinctive colour appearance phenom-

ena in our experiments (Stevens, Hunt, and simultaneous contrast effects, see Chapter 4), we mainly

use group L and B as training sets for predicting these phenomena. We used group T for chromatic

adaptation and group S for surround effect. The other independent phases (3, 5, 6, 16, and 18)

were used as a validation set, called group V. In addition, although the LUTCHI data set has colour

samples under limited range of luminances, we also used them (R-HL, LT, and CRT) as a third test

set for cross-validation and validation on different media.

5.2 Forward Model

We propose a new colour appearance model that closely follows Müller [1930]’s zone theory in

order to perform well under high-luminance conditions. The model consists of three main compo-

nents: chromatic adaptation, cone response, and visual cortex response for each perceptual colour

attribute. It aims to accurately predict lightness, colourfulness and hue, including the Hunt effect

(colourfulness increases with luminance levels), the Stevens effect (lightness contrast changes with

different luminance levels), and simultaneous contrast effect (lightness and colourfulness changes

with background luminance levels), as observed in Chapter 4. Additional correlates of brightness,

chroma, saturation, hue quadrature, and Cartesian colour opponent coordinates will be derived as

well.

First, we model input parameters for this forward model as follow:

• Absolute CIE tristimulus values (observed main colours): X Y Z ,

• Absolute tristimulus values of the reference white point: XwYw Zw ,

(where Yw corresponds to the peak luminance level Lw),

• Level of luminance adaptation: La [unit: cd/m2]

(luminance of viewing stimuli at about 10-degree angle),

• A medium type: E (e.g., paper, CRT, transparency, or high-luminance display).

The CIE defines colour elements as a light source (spectral energy), an object (normalised re-

flectance ratio on each wavelength), and a standard observer (presented as colour matching func-

tions). Following this standard, previous colour appearance models take the normalised reflectance

property (CIEXYZ, normalised to Y=100) for test colours. However, as shown in Chapter 4, absolute

luminance matters in perceived colour appearance. The absolute scale of the measured radiance

(CIEXYZ) can be very useful information for predicting colour appearance under high luminance

levels. Therefore, we use absolute CIEXYZ measurements instead of normalised CIEXYZ. A spectro-

radiometer or a characterised HDR camera system [Kim and Kautz, 2008a] (see Chapter 3) can be

used to measure absolute radiance. Our model also requires as input reference white point mea-

surements on an absolute scale. Finally, our model requires the level of luminance adaptation by

measuring the luminance of the viewing stimuli of a 10-degree viewing area. In our experimental
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set, luminance adaptation level comprises 88% of the background luminance, 4% of the test colour

luminance, 4% of the reference white luminance, and 4% of the reference colourfulness luminance

(see Figure 4.5). This weighted-average luminance of this 10-degree viewing area is used as an

input parameter for the level of luminance adaptation, following [Moroney et al., 2002]. In the

following, we explain all the components of our model.

5.2.1 Chromatic Adaptation

Humans perceive object colours as constant under different illumination (called colour constancy).

This is generally true; however, as shown in Section 4.5.7, lesser degrees of chromatic adaptation

may occur under lower colour temperatures such as the CIE illuminant A (white appears slightly yel-

low, see Figure 4.19). Once our eye has adapted to a certain viewing condition, the perceived colours

seem to be scaled by the adapted brightest colour. We assume that this scaling is only performed

in cone colour space. Further, certain colours seem more sensitive than others depending their own

hue. Such an inconsistency of the chromatic adaptation was discovered in surface colour research

[Lam, 1985]. This inconsistent chromatic adaptation, called a chromatic adaptation transform (CAT),

has been researched extensively, e.g., Bradford transform (BFD), CMCCAT97s, CMCCAT2000, and

CIECAT02. These transforms were derived from data sets [Helson et al., 1952; McCann et al., 1976;

Breneman, 1987; Mori et al., 1991; Kuo et al., 1995; Braun and Fairchild, 1996] and enable us to

predict corresponding colours in changes of spectral characteristics of illuminant. However, most of

these data sets are not publicly available.

Chromatic adaptation is as large as a research field as appearance modelling for cross media;

hence, generally previous CATs have been researched independently of colour appearance models.

As the focus of our experiments was to extend the luminance range of colour appearance models,

we exclude modelling chromatic adaptation from our research scope. Instead, we adopt one of the

previously developed chromatic adaptation transforms. We tested a selection of transforms: the HPE

transform (LMS cone space, used in RLAB) [Estévez, 1979], the BFD transform (used in CIECAT97s)

[Lam, 1985], and the CIECAT02 transform (used in CIECAM02) [Li et al., 2002]. Group L of the

luminance-varying phases (1, 2, 4, 7, 10, 17, and 19) is used for testing, assuming that the eye has

adapted to the light source completely. As shown in Figure 5.1, the three colour transforms perform

consistently better in terms of hue than raw calculations of CIELAB (von Kries chromatic adaptation

in CIEXYZ). Therefore, these three colour transforms are worth considering in order to predict in-

consistent chromatic adaptation with respect to hue. Among these, the HPE transform unfortunately

changes the perceived chroma. The BFD and CIECAT02 transforms present similar performance

with the CIECAT02 transform slightly outperforming the BFD transform in terms of colourfulness

and hue. The BFD transform also has an invertibility problem [Fairchild, 2005]. Therefore, we chose

and adopted the CIECAT02 model as our chromatic adaptation transform. Colourfulness errors in-

crease slightly after applying transforms in all cases, but note that chromatic adaptation transform is

used to predict hue changes with respect to illumination. Perceived colourfulness will be modelled

later.
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Figure 5.1: We compare three chromatic adaptation transforms (with CIEXYZ): the HPE transform

(LMS cone colour space), the BFD transform, and CIECAT02. These three chromatic transforms are

plugged into the CIELAB colour space structure as a form of von Kries chromatic adaptation. The

calculated L*, C*, H* values are compared with perceptual measurements in phases 1, 2, 4, 7, 10, 17,

and 19. Overall, CIECAT02 performs better than the other transforms.

In Equation (5.1), we transform the chromatically adapted cone signal, which is linear to inci-

dent radiation into the eye in absolute terms:
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It takes the incident (absolute) X Y ZD50 values and transforms them to new RGBC values, accounting

for chromatic adaptation based on the reference white. It is important to note that, in contrast to

previous models, we do not normalise the signal but keep its absolute scale; i.e., the white-adapted

RGBC has the same scale [use Yw in Equation (5.2)] as the original X Y Z:
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In the original CIECAT02 transform, a parameter D is used to estimate the degree of chromatic

adaptation by taking into account the level of luminance adaptation La [see Equation (2.90) and

(2.91)]. This parameter linearly interpolates the degree between 100% white adaptation and no

adaptation, depending on the luminance adaptation level. As shown in Figure 5.2, the parameter

D varies between 0.66–0.80 (F constant for dark surround — 0.8), and it starts to saturate from a

luminance level of 310 cd/m2. This means a higher luminance level than 310 cd/m2 will be adapted

in the same was as lower levels.

In our luminance-varying phases (group L), no distinguishing difference in the degree of chro-

matic adaptation was observed up to 16 860 cd/m2in our experimental data. CVs of predicted
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Figure 5.2: The degree of chromatic adaptation parameter D in CIECAT02. The X axis shows the

input luminance level, and the Y axis presents the interpolation parameter D [see Equation (2.90)]. In

this experimental dark surround, the parameter D only varies between 0.66–0.80 and starts to saturate

after 310 cd/m2of luminance adaptation level.

lightness, colourfulness, and hue without D were 15.47, 31.96, and 16.98; CVs of predicted light-

ness, colourfulness, and hue with D were 15.62, 31.74, and 16.74. These two prediction results

with/without the D parameter are almost identical to each other. Therefore, although we adopted

the chromatic transform matrix MCAT02 from CIECAT02, we exclude the nonlinear interpolation with

the degree of adaptation function D.

5.2.2 Cone Responses

Biological and physiological structures and mechanisms of the human eye are still obscured by a

lack of knowledge. According to previous research [Müller, 1930; Vos and Walraven, 1971; Estévez,

1979; Hunt, 1995], we have a different population ratio of LMS cones [Vos and Walraven, 1971],

which is related to a colour space [Estévez, 1979]. Most models have adopted a ratio based on a

compromise of physiological evidence (LMS cone colour space) [Estévez, 1979] and psychophysical

experiments resulting in a 40:20:1 ratio of LMS cones [Vos and Walraven, 1971].

Based on previous knowledge, the human eye is believed to exhibit a non-linear response

on each cone channel. Following Stevens [1961], this is usually modelled as a power function

(exponent: 1/2 [de Vries, 1943; Rose, 1948] or 1/3 [CIE, 1986]) derived from psychophysical

experimental data. Older colour appearance models, such as CIELAB, RLAB, and LLAB modelled

cone response within X Y Z space and assumed a simple power function as a response curve, which

reflects early physiological assumptions [de Vries, 1943; Rose, 1948] (see Section 2.3.4 for more

details of other models). Modern Hunt94-based models (Hunt94, CIECAM97s, FC, Fairchild, and

CIECAM02) transform the chromatically adapted (and normalised) X Y Z tristimulus values into

LMS cone space, commonly using the HPE transform [Estévez, 1979]. Note that RLAB uses the

HPE transform only for chromatic adaptation. These CAMs modelled cone response with hyper-

bolic functions of the form shown in Equation (2.11). However, existing models (and in particular
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CIECAM02), use a constant σ in Equation (2.11) (following Boynton and Whitten [1970]) which

causes the hyperbolic function [see Equation (2.93)] to resemble a power function (see Figure 5.3),

as mentioned by Kwak [2003].

Most applications of dynamic cone response functions take as input normalised cone signals

and a fixed adaptation point. Models based on Hunt94 [Hunt, 1995] use the FL function, which

takes the adaptation level La as input, in order to translate the relative input colour information

into a quasi-absolute scale. Our cone model is based on two insights. First, the Vm in the original

equation [see Equation (2.11)] is not the reference white, but the maximum saturation point of

cones. This means that the model works in terms of absolutes. Second, based on findings by Valeton

and van Norren [1983], the σ should be decided by the absolute level of luminance adaptation. As

mentioned by Hunt [1998] and Fairchild [2005], cones that contribute photopic vision are highly

concentrated in the fovea (1.5–2◦) and more sparsely populated throughout the peripheral retina.

There are no rods in the central fovea and there is a blind spot at a 12–15◦ angle from the fovea. As

the luminance of the adapting field, generally background, has been assumed the level of luminance

adaptation by most appearance models, e.g., CIECAM97s and CIECAM02, σ can be decided by

measuring the actual luminance of viewing stimuli at a 10◦ angle; or, in an imaging application,

measuring the averaged luminance value and using it as an input value.

In our model, tristimulus values (from chromatic adaptation) are transformed into LMS cone

space using the Hunt-Pointer-Estévez (HPE) transform [Estévez, 1979]:
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Figure 5.3: These plots show a cone response curve modelled by CIECAM02 up to (a) 1 000 cd/m2

and (b) 10 000 cd/m2. Although it has the form of a hyperbolic function, the actual outputs resemble a

power function that has an exponent between 1/2.51–1/2.79. The squared correlation coefficients (R2)

between a power function and the CIECAM02 cone response function are (a) 0.9999 and (b) 0.9988.
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We then model the cones’ absolute responses according to Equation (2.11):

L0 =
Lnc

Lnc + Lnc
a

,

M 0 =
M nc

M nc + Lnc
a

, (5.4)

S0 =
Snc

Snc + Lnc
a

.

We have only replaced the σ from the original equation (where it was given in troland units) with

the absolute level of adaptation La measured in cd/m2 (assuming that both units are related almost

linearly for the working range of the adaptation level, e.g., 10td ⇡ 1 cd/m2). The adaptation level

should ideally be the average luminance of the 10◦ viewing field (it serves as an input parameter

to our model). This adapting parameter of the level of luminance adaptation implicitly contains

the level of background luminance. It allows our model to predict the simultaneous contrast effect

with respect to lightness and colourfulness. Noting that the exponent parameter nc in the original

Equation (2.11) is derived from primate cone responses (nc=0.74 [Valeton and van Norren, 1983]),

we have separately derived nc from our experimental data as nc =0.57 by using an exhaustive search

(the iterative numerical optimisation with a certain range of constrains on the entire likelihood data

of lightness from the training data sets). See Figure 5.4 for an example of the predicted cone

response by using our model.

5.2.3 Achromatic Attributes

Before the cone signals are transported to our visual cortex, it is believed that they are decomposed

into two types of signals: achromatic and colour opponent signals by the ganglion cells, based on
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Figure 5.4: These two plots compare achromatic signals (lightness) of a cube-root power function

model (the same as in CIELAB) and our proposed hyperbolic function model [compared with perceived

lightness in phase 19 (16 400 cd/m2)]. A power-function-based model [plot(a)] forms a curve away

from the diagonal for high luminances. The CV between perceptual lightness and L* values is 28.07%.

In contrast, our model’s intermediate achromatic signals A/Aw (weighted summation of three cone

responses) [plot(b)] are closer to the diagonal, which means our predictions of lightness are much

closer to the actual perception. The CV between perceptual lightness and normalised achromatic signals

is 10.33%.
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zone theory [Müller, 1930]. The actual biological and physiological structures and mechanisms

are still unclear due to a lack of evidence. It is believed that LMS cones have a roughly 40:20:1

proportion in the retina [Vos and Walraven, 1971]. The summation of the three cone signals is

believed to produce an achromatic signal in retinal ganglion cells in modern colour appearance

modelling. Our model takes the weighted summation as an achromatic signal. The relative ratio

of the achromatic signal to the reference white produces lightness-to-be signal. The signal A is then

defined as:

A= (40L0+20M 0+S0)/61. (5.5)

Lightness is defined as the ratio between the achromatic signal A and the achromatic signal of

reference white Aw , since the observer was asked to relate the two. See Figure 5.4 for an example

of the predicted achromatic signals. The accuracy of the achromatic signals is decided by that of the

cone response functions. As shown in Chapter 4, lightness perception trends are more complicated

than a simple power function. Power-function-based models (from CIELAB to CIECAM02) tend to

form a curve off from the diagonal for high luminances, which shows the differences between the

actual perception and the model’s prediction. Our intermediate achromatic signal (the summation

of three cone responses) is closer to the actual perceived values.

However, as is shown in Figure 5.4(b), the A/Aw in our model still shows an inverse sigmoidal

shape. Hence, we assume that the visual cortex has an additional contrast enhancement process that

resembles an inverse sigmoidal function. We solve the undetermined inverse hyperbolic function by

using an iterative numerical optimisation on the likelihood data for lightness from the training data

sets. g(x) derives the lightness J 0 from a given cone signal A related to Aw:

J 0 = g
✓

A

Aw

◆

, (5.6)

with

g(x) =

2

6

4

−(x−β j)σ
nj
j

x−β j−↵ j

3

7

5

1/nj

. (5.7)

The values of the parameters are derived from our experimental data, yielding ↵ j = 0.89,β j =

0.24,σ j = 0.65, and nj = 3.65. Note that J 0 may yield values below zero and above one hundred, in

which case it should be clamped. This corresponds to the case where the observer cannot distinguish

dark colours from even darker colours and bright colours from even brighter ones. Our lightness

perception function allows us to predict the Stevens effect to a high accuracy, see Figure 5.5.

As already mentioned in Chapter 4, the perceived lightness values vary with different media,

even though the physical stimuli are otherwise identical. By testing our model with other media data

from the LUTCHI data sets, we observed our model showing media dependency and no surround

dependency, unlike other models, e.g., Hunt94, LLAB, and CIECAM97s (see Section 2.3.4). We have

decided to incorporate these media differences explicitly in our model in order to improve lightness
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Figure 5.5: These three plots compare the perceived lightness against the predicted lightness in phase 19

(16 400 cd/m2). (a) plots the predicted lightness perception by CIELAB (L*). (b) plots the prediction of

lightness by CIECAM02 (J). The lightness predictions of the CIELAB and the CIECAM02 present similar

trends (a curve off the diagonal). (c) shows the lightness prediction of our model (J). It is the results of

Equation (5.6) and (5.7) on the achromatic signals [see Figure 5.4(b)]. The CVs between perceptions

and predictions are (a) 28.07%, (b) 21.17%, and (c) 8.03%.
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Figure 5.6: By testing our initial lightness model with other media data from the LUTCHI data sets,

our initial model presents media dependency in predicting lightness like other models. We therefore

incorporate these lightness differences explicitly in our model in order to improve prediction. Plots

(a), (b), and (c) represent the initial lightness prediction J 0 against transparency (LT phase in the

LUTCHI data sets), CRT display (CRT phase), and paper (R-HL phase). Plots (d), (e), and (f) show the

final lightness predictions J through modelling media dependency [CVs: (d) 8.66%, (e) 8.16% , and

(f) 7.85%]
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Figure 5.7: (a) plots perceived brightness against perceived lightness in R-VL group phases [Luo

et al., 1993a] in the LUTCHI data sets. The perceived brightness increases linearly according to the

perceived lightness. The slope of the brightness is affected by the level of peak luminance. (b) shows

the least-squares fitting of the relationship between brightness and lightness with respect to luminance.

The logarithm of (brightness/lightness) increases in a slope of 0.1308 according to the logarithm of

luminance (squared correlation coefficient R2 = 0.9608).

prediction, yielding a media-dependent lightness value:

J = 100
⇥

E
�

J 0 −1
�

+1
⇤

, (5.8)

where the parameter E is different for each medium. A value of E = 1.0 corresponds to a

high-luminance LCD display, transparent advertising media yield E = 1.2175, CRT displays are

E = 1.4572, and reflective paper is E = 1.7526. The lightness contrast J is optimised from our

data; reflective media (R-HL), CRT, and transmittance (LT) phases are from the LUTCHI data sets.

Figure 5.6 shows the differences between J 0 and J .

Brightness was not measured in our experiments. We used R-VL phases [Luo et al., 1993a]

from the LUTCHI data sets, which is the only data set to have a lightness and brightness compar-

ison. These few phases with both lightness and brightness measurements indicate that these two

properties have a linear relationship [see Figure 5.7(a)]. We found that luminance has a linear

relationship to brightness/lightness in the log-log domain [see Figure 5.7(b)]. We therefore define

brightness as:

Q= J
�

Lw
�nq . (5.9)

The parameter is driven from experimental data and yields nq = 0.1308.

5.2.4 Chromatic Attributes

Retinal ganglion cells are believed to convert cone signals into colour opponent signals a and b, which

are based on differences between the cone responses. We adopt previous psychophysical results on
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Figure 5.8: (a) shows the least-squares fitting of the slope of (colorfulness/chroma) and its offset. The

colourfulness increases with a slope of 0.11 with an offset of 0.61 according to the logarithm of lumi-

nance (R2 = 0.935). (b) plots perceived average colourfulness against peak luminance in luminance-

varying phases (group L) in our data sets. The average predicted colourfulness (red line) matches the

average perceived colourfulness (blue line) with a CV of 3.83%. The green line represents predicted

chroma.

how the responses are combined together [Vos and Walraven, 1971; Hunt, 1991], yielding:

Redness−Greenness a=
1

11

�

11L0 −12M 0+S0
�

, (5.10)

Yellowness−Blueness b=
1

9

�

L0+M 0 −2S0
�

. (5.11)

Chroma C is the colourfulness judged in proportion to the brightness of the reference white, i.e.,

it should be independent of luminance Lw (like lightness). It is commonly based on the magnitude

of a and b [CIE, 1986]:

C =↵k

Å

p

a2+ b2
ãnk

. (5.12)

Note that it is possible to optimise the parameters ↵k and nk after modelling colourfulness, for

which we have actual perceptual data. We further know that colourfulness should increase with the

luminance level (Hunt effect, see Chapter 4 for findings). Hence, we found the relationship between

chroma (the magnitude of a and b) and colourfulness to be linear in the logarithm of the reference

white luminance Lw:

M = C(↵m log10 Lw+βm). (5.13)

From this we can derive parameters for colourfulness as well as chroma based on our data and the

constraint that chroma does not change with luminance: ↵k = 456.5, nk = 0.62, ↵m = 0.11, and

βm = 0.61. These parameters were numerically optimised on the likelihood data of colourfulness

from training data sets. See Figure 5.8 and 5.9 for comparison.

Saturation is independent of brightness and colourfulness. It is modelled by the square-root of
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Figure 5.9: These three plots compare the perceived colourfulness against the predicted colourfulness in

phase 19 (16 400 cd/m2). (a) plots the predicted colourfulness perception by CIELAB (C*) with a CV of

31.23%. (b) plots the prediction of colourfulness by CIECAM02 (J) with a CV of 19.67%. (c) presents

the colourfulness prediction of our model (M) with a CV of 14.15%. CIELAB C* shows a comparative

variation in predicting colourfulness. CIECAM02 M presents better predictions than CIELAB C* (scaled

by a colourfulness scalar 1.23). Our model’s colourfulness values are closer to the diagonal with smaller

variation, which means our predictions are much closer to the actual perception.

brightness over colourfulness (defined by Hunt [1998]), following Moroney et al. [2002]:

s= 100

r

M

Q
. (5.14)

The hue angle is derived by converting colour opponent signals of a and b into polar coordi-

nates:

h=
180

⇡
tan−1 (b/a) . (5.15)

This hue angle (0◦–360◦) could be used directly as a prediction of perceived hue. However, the

hue angle in psychophysical experiments is scaled from 0 to 400 (see Section 4.3.1 for more details

on the hue estimation). Therefore, the computed hue angle is interpolated in the perceptually

uniform scale to match the perceptual hue quadrature used in the experiments. The perceptual

hue quadrature [H = huequad(h)] has been shown in [Hunt, 1991] to improve accuracy, which we

adopt in our model as well:

H = H1+
100(h−h1)/e1

(h−h1)/e1+(h2−h)/e2
, (5.16)

where e is e = 1
4

h

cos
⇣

h ⇡
180
+2
⌘

+3.8
i

. e1 and h1 are the values of e and h, respectively, for the

unique hues having the nearest lower value of h in Table 5.1; e2 and h2 are the values of e and h,

respectively, for the unique hues having the nearest higher value of h in Table 5.1. H1 is 0, 100, 200,

or 300 according to whether red, yellow, green or blue, respectively, is the hue having the nearest

lower value of h. See Figure 5.10 for comparison.
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Figure 5.10: These three plots compare the perceived hue against the predicted hue in phase 19

(16 400 cd/m2). (a) plots the predicted hue perception by CIELAB (h*) with a CV of 23.11%. For

only plotting purpose, h* is scaled to 400. (b) plots the prediction of hue by CIECAM02 (H) with a

CV of 12.60%. (c) presents the hue prediction of our model (H) with a CV of 13.86%. CIELAB h*

shows a comparative variation in predicting hues around green primaries. In contrast, CIECAM02 and

our model’s hue values are closer to the diagonal, which means our predictions are closer to the actual

perception. Both hue estimates are almost identical.

Unique Hue Red Yellow Green Blue

Hue quadrature H 0 100 200 300

Hue angle h 20.14 90.00 164.25 237.53

Eccentricity e 0.7741 0.7227 0.9884 1.1976

Table 5.1: Hue eccentricity parameters for unique hues. Adapted from [Hunt, 1991].

Finally, the colour coordinates introduced above can form a three-dimensional colour space

(lightness, chroma, and hue). The hue angle can be represented in Cartesian coordinates with

respect to the three-dimensional colour space (comprising lightness J , chroma C , and hue h):

Redness−Greenness aC = C cos
Å

h
⇡

180

ã

, (5.17)

Yellowness−Blueness bC = C sin
Å

h
⇡

180

ã

. (5.18)

The next section summarises our analytical inverse model of these forward calculations.

5.3 Inverse Model

The development of our colour appearance model is motivated by the complete colour reproduc-

tion pipeline (see Section 2.1 for more details). A forward device transform allows us to con-

vert device-dependent signals to physically-meaningful device-independent coordinates. Forward

appearance model transforms these physically-meaningful coordinates to perceptually-uniform ap-

pearance scales. These two stages yield the estimation of colour perception, but two inverse stages

are required to complete colour communication for reproducing estimated colours on a different
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medium [CIE, 2004] (see Chapter 6 for more details on our colour reproduction pipeline). There-

fore, analytical invertibility of the device characterisation (especially output devices) and the colour

appearance model is essential for application of the appearance model.

With colour reproduction as context, we developed our model while considering analytical

invertibility. The proposed mathematical pipeline in Section 5.2 is analytically invertible, and does

not require any iterative estimation (such as Newton’s method) to invert them. First, we model input

parameters for this inverse model as follows:

• Perceptual colour appearance values: J (lightness), M (colourfulness), and h (hue),

• Absolute tristimulus values of the reference white point (of a target media): XwYw Zw ,

• Level of luminance adaptation (in viewing the target media): La [unit: cd/m2]

(luminance of viewing stimuli at about a 10-degree angle),

• A target medium type: E (e.g., paper, CRT, transparency, or high-luminance display).

Our forward model takes physical input values of reference white, luminance adaptation level,

and medium type; our inverse model takes perceptual input values of reference white, luminance

adaptation level, and medium type (specifying the output medium viewing conditions) and outputs

physical values.

Our inverse model first computes achromatic white point Aw of the target device using Equa-

tions (5.4) and (5.5). Then, it computes brightness Q from lightness J [see Equation (5.9) for

optimised parameters]:

J =Q/(Lw)
nq . (5.19)

Then, the lightness J is used to compute the achromatic signal A [see Equations (5.6), (5.7), and

(5.8)]:

J 0 = (J/100−1)/E+1, (5.20)

A= Aw

⇣

↵ j J
0n j

J 0n j+σ j
n j +β j

⌘

. (5.21)

For inverting colourfulness, Chroma C is first calculated from colourfulness M [see Equa-

tion (5.13)]:

C =M/(↵mlog10 Lw+βm). (5.22)

The chroma value C is then used for deriving colour opponent signals a and b from chroma C and

hue angle h [see Equations (5.12) and (5.15)]:

a= cos(⇡h/180)
�

C/↵k
�1/nk , (5.23)

b= sin(⇡h/180)
�

C/↵k
�1/nk . (5.24)

Once we have the achromatic signal A and opponents a and b, this allows us to compute non-linear
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cone signals L0M 0S0:
2
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L0

M 0

S0
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7
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5

=

2
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4
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3

7
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5

. (5.25)

The non-linear cone signals L0M 0S0 are then converted to linear cone signals LMS [see Equa-

tion (5.4)]:

L =
⇣−Lnc

a L0

L0 −1

⌘1/nc
, (5.26)

M =
⇣−Lnc

a M 0

M 0 −1

⌘1/nc
, (5.27)

S =
⇣−Lnc

a S0

S0 −1

⌘1/nc
. (5.28)

After that, our model computes tristimulus X Y ZD50 from cone signals LMS using the HPE transform

[see Equation (5.3)]. Finally, our model applies an inverse chromatic adaptation transform to the

white point of the target medium [see Equation (5.1) and (5.2)]. The next section presents the

performance of our model in predicting human colour perception when compared with other colour

appearance models (CIELAB, RLAB, and CIECAM02).

5.4 Results

The following sections provide qualitative and quantitative analysis of our model. We have ap-

plied our model, as well as CIELAB, RLAB, and CIECAM02, to our perceptual data sets (for high-

luminance conditions) and the LUTCHI data sets (for low-luminance conditions). However, using

our data set with the LUTCHI data set has a drawback. The colourfulness data sets are not directly

compatible without first applying a calibrating scalar, i.e., a colourfulness scalar should be derived

before applying the data set to a model.

5.4.1 Estimations under High Luminances

Modelling accuracy results under luminance-varying phases can be found in Figure 5.11. The group

L phases (1, 2, 4, 7, 10, 17, and 19) are used. The luminance levels vary from 44 to 16 400 cd/m2

with a fix background ratio (23%). Our prediction in terms of lightness is statistically significantly

(one-side t-test with alpha = 0.05) better than the predictions of the other models and also very

consistent up to high luminances. The average CV [see Equation (2.12)] value (11.51%) is as large

as the long-term repeatability CV value (11.83%) for the averaged human observer (see Table 4.2).

This means that our model performance is as accurate as the variation of the experimental data.

Other models achieve a less accurate prediction and, importantly, their prediction quality fluctuates

considerably between phases. Colourfulness is also predicted significantly better with our model

than with the other models. Our colourfulness prediction is very consistent. The average CV value

(17.15%) is similar to the CV value between short-term repeated runs of the same experiment

(17.23%). In particular, RLAB performs significantly worse than other models in predicting colour-

fulness, and the prediction quality in CIELAB fluctuates more than other models. Hue is predicted
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similarly among CIELAB, CIECAM02, and our model (average CV: 14.74%), and the hue prediction

of CIECAM02 is better than others [see Figure 5.13 (a), (c), and (e) for average comparison]. This

result indicates that our CAM models the Stevens and Hunt effects (observed in our experimental

data) to a high accuracy.

Figure 5.12 shows modelling accuracy results against different background ratios (group B).

Phases from 8 to 12 are used. The background ratio varies from 0 (black) to 95% (white). Our pre-

diction in terms of lightness is significantly better than the others. The average CV value (12.26%) is

roughly as large as the long-term repeatability CV value (11.83%) for the average human observer.

Other models achieve a less accurate prediction. CIECAM02 and our model predictions are getting

better against a darker background, but CIELAB and RLAB performance are getting better against

a brighter background. Colourfulness is also predicted significantly better than the other models

and is very consistent. The average CV value (15.86%) is lower than the CV value of short-term re-

peatability (17.23%). In particular, the performances of CIECAM02 and CIELAB fluctuate between

different backgrounds. Hue prediction is very similar to the other models (average CV: 14.38%)

except RLAB. This result shows that our CAM models the simultaneous contrast effect to a high ac-

curacy in terms of lightness and colourfulness as observed in our experimental data. See Figure 5.13

(b), (d), and (f) for average comparison.

Chromatic adaptation results can be found in Figure 5.14. Group T (phases 7, 13, and 14)

of our data sets is used. As before, our prediction of lightness is significantly better than the other

models and is very consistent. The average CV value is 12.26% (as large as the long-term repeatabil-

ity). The colourfulness prediction of our model is also better in all cases (average CV: 18.77%). Hue

prediction is very similar to the other models. Our chromatic adaptation transform is adapted from

CIECAM02, but the performance of our model (average CV: 16.34) in three different colour temper-

atures is better than CIECAM02 (average CV: 17.21) because of the different modelling structure

and optimisation of the model. Our model can predict inconsistent chromatic adaptation to a high

accuracy [see Figure 5.16 (a), (c), and (e) for an average comparison].

Our model does not include a surround parameter, but the surround effect is implicitly mod-

elled by using the level of luminance adaptation (which implicitly contains a surround measure-

ment). Surround effect results can be found in Figure 5.15. Group S (phases 10 and 15) compares

two different surround levels: dark and average (20% of the peak luminance). The lightness pre-

diction of our model is statistically significantly better than other models and very consistent. The

average CV value is 13.98%. The lightness prediction of CIECAM02 with an average surround is

comparatively worse than with a dark surround. The colourfulness prediction of our model is also

better with both surrounds (average CV: 17.34). Hue prediction is very similar to the other models

as before (average CV: 14.87). Hue estimation with an average surround increases from 12.30% to

17.45% due to the difference of colour temperatures of the light source (main colour stimuli) and

the surround light sources. This indicates that our model can predict the surround effect well. See

Figure 5.16(b), (d), and (f) for a comparison of their averages.



5.4. Results 140

(a)

0

5

10

15

20

25

30

35

44 123 521 1,051 2,196 8,458 16,400

C
Vs

 o
f  

lig
ht

ne
ss

Peak luminance [cd/sqm]

CIELAB

RLAB

CIECAM02

Our model

(b)

0

5

10

15

20

25

30

35

40

45

50

44 123 521 1,051 2,196 8,458 16,400

C
Vs

 o
f  

co
lo

ur
fu

ln
es

s

Peak luminance [cd/sqm]

CIELAB

RLAB

CIECAM02

Our model

(c)

0

5

10

15

20

25

30

44 123 521 1,051 2,196 8,458 16,400

C
Vs

 o
f  

hu
e

Peak luminance [cd/sqm]

CIELAB

RLAB

CIECAM02

Our model

Figure 5.11: Results of estimations in luminance-varying phases group L (44–16 400 cd/m2) with a

fix background ratio (23%). We compare a few phases (1, 2, 4, 7, 10, 17, and 19) of our experiment

in terms of lightness, colourfulness, and hue prediction error (CV) with CIELAB, RLAB, and CIECAM02.

Our model performs statistically significantly better than the other models in terms of lightness and

colourfulness, which means our model can predict the Stevens effect to a high accuracy. Colourfulness

prediction is also better in all cases, which means our model can predict the Hunt effect to a high

accuracy. Hue prediction is very similar to the other models even though CIECAM02 is better especially

under low luminances.
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Figure 5.12: Results of estimations in background-varying phases group B (0-95%) under a luminance

of 2 241 cd/m2. We compare these phases (8–12) of our experiment in terms of lightness, colourfulness,

and hue prediction error. Our model performs statistically significantly better than the other models in

terms of lightness and colourfulness. This means that our model can predict the simultaneous contrast

effect to a high accuracy. Hue prediction is very similar to the other models except RLAB.
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Figure 5.13: These plots compare the average CV errors in estimating colour appearance in terms

of lightness, colourfulness, and hue with luminance-varying phases (group L) and background-varying

phases (group B). Our model performs significantly better than others in predicting lightness and colour-

fulness in both groups. Hue prediction is almost identical to CIECAM02 and CIELAB.
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Figure 5.14: Results of estimations in colour-temperature-varying phases (group T) under a luminance

of 1 233 cd/m2. We compare the colour temperature-varying phases (7, 13, and 14) of our experiment

in terms of lightness, colourfulness, and hue prediction error (CV) with CIELAB, RLAB, and CIECAM02.

Our model performs significantly better than the other models in terms of lightness. Colourfulness

prediction of our model is also better in all cases. Hue prediction is very similar to the other models.
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Figure 5.15: Results of estimations in surround-varying phases (group S) under a luminance of

2 201 cd/m2. We compare the surround-varying phases (10 and 15) of our experiment in terms of

lightness, colourfulness, and hue prediction error with CIELAB, RLAB, and CIECAM02. Our model

performs significantly better than the other models in predicting lightness. Colourfulness prediction is

also better in all cases. Hue prediction is very similar to the other models, except RLAB.
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Figure 5.16: These plots compare the average CV errors in estimating colour appearance in terms

of lightness, colourfulness, and hue with colour-temperature-varying phases (group T) and surround-

varying phases (group S). Our model performs significantly better than others in predicting lightness.

Colourfulness prediction is also better in all cases. Hue prediction is almost identical to CIECAM02 and

CIELAB.
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Figure 5.17: Results of estimations in a validation set (phases 3, 5, 6, 16, and 18). We compare the

group V phases of our experiment in terms of lightness, colourfulness, and hue prediction errors (CV)

with CIELAB, RLAB, and CIECAM02. Our model performs significantly better than the other models in

terms of lightness even on these independent test phases. Colourfulness prediction is also better in all

cases. Hue prediction is very similar to the other models, except RLAB.
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Figure 5.18: These three plots compare the average CV errors in estimating colour appearance in

terms of lightness, colourfulness, and hue with a validation set (phases 3, 5, 6, 16, and 18). Our model

performs significantly better than others in predicting lightness and colourfulness. Hue prediction is

similar to CIECAM02 and CIELAB.
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The previous data sets are included in the maximum likelihood optimisation to derive our colour

appearance model. We have independent data sets (phases 3, 5, 6, 16, and 18 — group V), which

are used as test phases for cross-validation of our model. These data sets have a variation of dif-

ferent peak luminances and different backgrounds. Therefore, these results are a good indicator

of predictive performance under high luminance levels. As shown in Figure 5.17, our model pre-

diction in terms of lightness is statistically significantly better than in other models and is also very

consistent. The average CV value (10.15%) is as large as the CV values in our training data (11.83%

— group L). This proves that our model is free from over-fitting issues. Other models achieve a

less accurate prediction, and the performance of the CIELAB and RLAB models fluctuates between

phases. Colourfulness prediction of our model is also significantly better than the others and is very

consistent (average CV: 18.86 — similar to the training group L: 17.15%). Hue is predicted by our

model similarly to CIELAB and CIECAM02. The average CV is 14.16%, similar to the CV of 14.74%

in our training data set (group L). In other words, our model predicts lightness and colourfulness

consistently to a higher accuracy than other models. See Figure 5.18 for a comparison of average

CV.

Figure 5.19 summarises the main result of all phases (including the training and test data sets).

Our prediction in terms of lightness is significantly better than the other models and is very consis-

tent. The CV value is approximately as large as the repeatability CV value for a human observer,

which indicates that our model’s performance is as accurate as the variation of the experimental

data. Other models achieve a less accurate prediction and, importantly, their prediction quality fluc-

tuates considerably between phases. Colourfulness is also predicted very consistently by our model

and is generally much better than the other models. As before, the CV value is similar to the CV

value between two repeated runs of the same experiment. This again indicates that our model’s

colourfulness prediction performance is as accurate as the variation of the experimental data. The

other models’ performance varies significantly, not only between models, but also between phases.

Hue is predicted very similarly between all models, where even the simple CIELAB model performs

well. See Appendix A.6 for the entire results.

5.4.2 Estimations on Different Media

We further investigate how our model predicts the data from the LUTCHI data set. This allows us

to test our model’s performance on different media like paper, transparency, or CRT, and it validates

our model’s performance by using a third test set as a cross-validation. We use a number of phases

from three different groups (R-HL, CRT, and LT) in the LUTCHI data sets as these are samples of

photopic vision in the LUTCHI data set.

Figure 5.20 quantitatively compares the predictions of CIECAM02 and our model on different

media against perceived colour appearance. (a), (b), and (c) show the detail lightness, colourful-

ness, and hue from R-HL phase 2; (d), (e), and (f) show the detail from CRT phase 1; (g), (h),

and (i) present the detail of LT phase 1. Our lightness, colourfulness, and hue predictions are very

much along the diagonal, indicating that our model covers the dominant perceptual phenomena.
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Figure 5.19: We compare all 19 phases of our experiment (including the training and test data sets)

in terms of lightness, colourfulness, and hue prediction error (CV) with CIELAB, RLAB, and CIECAM02.

Our model performs consistently better than the other models in terms of lightness. Colourfulness

prediction is better in almost all cases. Hue prediction is very similar to the other models, even though

CIECAM02 is minimally better at lower luminances.
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(a) R-HL phase 2 (lightness)
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(c) R-HL phase 2 (hue)
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(d) CRT phase 1 (lightness)
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(e) CRT phase 1 (colourfulness)
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(f) CRT phase 1 (hue)

0

20

40

60

80

100

0 20 40 60 80 100

Pe
rc

ei
ve

d 
 li

gh
tn

es
s

Predicted  lightness

Trans.

CIECAM02

Our model

(g) LT phase 1 (lightness)
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(h) LT phase 1 (colourfulness)
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Figure 5.20: Quantitative comparison of the prediction of colour appearance on different media against

perceived colour appearance (from LUTCHI data sets). R-HL phase 2 has a background ratio of 6.2%

under a luminance of 252 cd/m2. CRT phase 1 has a background ratio of 20% under a luminance

of 44 cd/m2. LT phase 1 has a background ratio of 16% under a luminance of 2 259 cd/m2. (The

colourfulness scalar of our data was 0.65 against the LUTCHI LT data set.) It can be seen that our

model achieves very good lightness, colourfulness, and hue prediction. CIECAM02 is not able to predict

lightness and hue on transparency, and colourfulness on paper and CRT media. In particular, the

hue measurements on paper and CRT media in the LUTCHI data sets present comparable offsets with

certain colours. As CIECAM02 and our model show similar patterns of offset, we suspect the offsets are

measurement errors of the hue appearance in the original LUTCHI data sets.
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However, CIECAM02 incorrectly estimates lightness [see Figure 5.20(g)], yielding values that form

a curve off the diagonal. This indicates that CIECAM02 underestimates lightness perception under

high luminances. Colourfulness and hue predictions of CIECAM02 also show mismatches to the

actual perception [see Figure 5.20(b), (e), and (i)]. These effects can be noticed in other phases as

well: the predicted appearance forms a curve instead of a diagonal line as would be expected.

Figure 5.21 summarises the results of the LUTCHI data sets. We ran all four models (CIELAB,

RLAB, CIECAM02, and our model) on a number of phases from the data sets [transparency, reflective

media (paper), and CRT]. The average CV error of lightness is 10.84%, similar to the average CV

of 11.41% for our entire data set. The average CV error of hue is 14.59%, which is almost identical

to the error of 15.14% in our data. The average CV error of colourfulness (20.25%) is slightly

more than the error of 17.76% in our data. In summary, our model outperforms the other colour

appearance models in terms of lightness, colourfulness, and hue, even though the LUTCHI data set

was not the main basis for the derivation of our model.
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Figure 5.21: This figure quantitatively compares the average CV error (and standard deviation) of

estimated lightness, colourfulness, and hue when applied to several phases of the LUTCHI data set.

In particular, we use the LT phases (transparency), R-HL phases (reflective media), and CRT phases.

Our model achieves the best overall prediction. Further, the variation in error is rather small for our

lightness and colourfulness prediction, indicating that our model performs consistently.
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5.5 Discussion

In the development of our colour appearance model, we have chosen to fit most constants in our

model, instead of relying on previous results. We have considered high-dynamic-range colour re-

production, i.e., the invertibility of our model, as well as tried to avoid over-fitting during the

optimisation. Although we developed our appearance model with inspiration from zone theory

[Müller, 1930], we tried to avoid using physiological constants which were derived from primate

measurements, for instance, parameter n= 0.74 in Equation (2.11). This primate-driven parameter

has been adopted in previous CAMs. We found that 0.57 fits better to our experimental data. Hence,

we believe that the human visual system may have different responsivity from that of the primate. It

is worth noting that colour appearance models are only computational models of colour appearance

and as such do not try to describe how human vision actually works.

As shown in Chapter 4, the response of the human visual system presents complicated non-

linear characteristics for a given physical stimuli. Modelling these non-linear characteristics with

a few sets of equations is a challenging task. For example, the simplest approach might be to

use a polynomial function. The function could be easily fitted through linear regression to a high

accuracy for the given data set. However, polynomial equations could be over-fitted to the given

training data and are not invertible when of a higher order than the second order. Therefore,

particularly for modelling lightness, we use hyperbolic functions. This enables us to model lightness

to a significantly higher accuracy than other models while keeping analytical invertibility. However,

these types of equations cannot be solved by linear solving. Therefore, we conducted an exhaustive

search to find the maximum likelihood for a given training data set. We validated our model through

cross-validation with independent data sets and third test sets (see Figure 5.17 and 5.21). However,

this numerical optimisation is still open to development; our freely available experimental data [Kim

et al., 2009] may provide further opportunities.

Our psychophysical experiments and colour appearance model focused on high-luminance pho-

topic vision rather than dim (mesopic) or dark (scotopic) vision because our research was motivated

by the advent of high-dynamic-range imaging, which deals with higher levels of luminance. For in-

stance, our colour appearance model does not model the rods’ contribution under dark luminance

conditions. If the peak luminance level is under ⇠10 cd/m2 the performance of our model may

decrease insofar as the rods and the cones have different sensitivities to the luminance. For mesopic

vision (phase 1, under 43 cd/m2 luminance), our model still outperforms other models (average CV:

11.15% in predicting lightness), see Figure 5.21.

Our model does not take a separate background parameter. Our model is only driven by the

adaptation luminance level and the peak luminance level. In contrast, the CIECAM02 model uses

the luminance adaptation level and the background luminance level respectively. We share the same

definition of the level of luminance adaptation [Moroney et al., 2002], which means the amount of

luminance in an approximately 10-degree viewing angle. However, we found that the measurement

of the level of luminance adaptation implicitly contains the background luminance level (as the
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background is a main part of the adapting field). This means that the separation between the

luminance adaptation level and the background luminance level is a redundant parameterisation.

Therefore for applications of a colour appearance model with respect to colour reproduction, the

decision to use a background luminance level is questionable [Fairchild, 2005]. Hence, we chose an

approach that derives our model without an explicit background luminance level parameter.

Our model also does not take a separate surround parameter as in our experiment its influence

was not significant. Even though our model does not have an explicit parameter for surround, its

effect could be taken into account by changing the adaptation level accordingly. In our experiments,

we were able to build only a limited range of surround (average level — 20% of the peak luminance)

because our main colour stimuli is already very bright. We were not able to create a high-luminance

viewing surround because of the limitations with light sources that is large and bright enough to

cover the room. As a result, our experiment did not fully investigate how the surround influences

perception at high luminances, but the measured influence on the perceived attributes was minimal,

as was also observed in [Breneman, 1977].

5.6 Summary

We have presented a new colour appearance model that has been designed from the ground up to

work for an extended luminance range. As no colour perception data was available for high lumi-

nance ranges, we have first conducted a large psychophysical magnitude experiment to fill this gap.

Based on our data, as well as previous data, we have developed a model that predicts lightness,

colourfulness and hue to a high accuracy for different luminance ranges, levels of adaptation, and

media. In contrast to other CAMs, our method works with absolute luminance scales, which we be-

lieve is an important difference and key to achieving good results. The next chapter demonstrates an

application of our colour appearance model to complete a high-fidelity colour reproduction pipeline

for high-dynamic-range imaging.
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Chapter 6

Colour Reproduction in

High-Dynamic-Range Imaging

The previous chapter describes a novel colour appearance model (CAM) which is derived from our

experimental data sets of perceptual attributes measured under high levels of luminance. This com-

putational model of human colour vision allows us to convert physically-meaningful high-dynamic-

range (HDR) radiance values (obtained from HDR characterisation) to perceptually-uniform colour

appearance attributes. These forward calculations yield perceptual coordinates for a given physi-

cal stimulus. The perceptual coordinates are reproducible on a new output medium such that the

colour appearance model is analytically invertible, i.e., perceptual lightness, colourfulness, and hue

values can be mathematically inverted into physical quantities (e.g., CIEXYZ) with a new set of

target viewing parameters as input. These physical coordinates of an output device are then con-

verted to device signals through an inverse device characterisation model. This chapter introduces

a colour reproduction pipeline to achieve high-fidelity reproduction of real-world radiance values

on any output medium and then evaluates the perceived similarity of the reproductions to the real

scenes through a series of psychophysical experiments.

6.1 Image Reproduction

This section introduces an image reproduction pipeline for reproducing high-dynamic-range scenes

on an output display device. The proposed pipeline achieves a high level of fidelity in the reproduc-

tions, as shown by psychophysical evaluations. The imaging characterisation method, introduced

in Chapter 3, is used to capture high-dynamic-range scenes. The appearance model, described in

Chapter 5, is used to complete the visual communication at each stage. This section proposes an

HDR imaging system by combining these previously described elements.

6.1.1 Reproduction Pipeline

Suppose we are taking an HDR image of a real-world landscape with an HDR camera system. As pre-

sented in Chapter 3, our characterisation method enables us to convert such an HDR RGB image into

a physically-meaningful CIEXYZ radiance map (on an absolute scale). Our colour appearance model

for high-luminance levels (covering the dynamic range of the human visual system, see Chapter 5)



6.1. Image Reproduction 154

then allows us to convert the physically-meaningful coordinates into perceptually-uniform coordi-

nates of colour appearance, e.g., lightness, chroma, and hue (see Figure 6.1). This completes the

forward communication of HDR colour information from the real world to human perception. On

the other hand, suppose we already have a reproduction of a real-world landscape, say a digital

photograph of the landscape on an sRGB display. Insofar as we have a characterisation model of the

display, we can convert RGB signals of the image into actual physical radiance values in CIEXYZ.

Once we have the physical coordinates of the displayed image, we can convert these values to per-

ceptual appearance attributes by using our colour appearance model. This enables us to predict the

perception of the photograph under a given viewing environment. At this point, we have two sets

of perceptual coordinates: the perception of the real-world landscape and that of the reproduction

of the landscape. The closer the reproduction perceptual coordinates are to those of the real world,

the more faithful the duplication with respect to visual perception. High-fidelity colour reproduction

of the real world is achievable in this approach.

The perception of colour reproduction is a metameric sensation, i.e., the relationship can be rep-

resented as a many-to-one function with viewing environment parameters. Imagine that two sets of

perceived colours are identical. This means that two different observations on different media under
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Figure 6.1: High-fidelity colour reproduction pipeline for HDR imaging. In observing the real world,

an HDR camera system captures real-world radiance as input. The HDR characterisation model con-

verts the captured HDR image into a physically-meaningful radiance map. A forward colour appearance

model then converts physical radiances to perceptual coordinates, e.g., lightness, colourfulness, and hue

(J Mh). Imagine that we observe a reproduction of the real world. A forward output device characteri-

sation model converts device signals to physical radiance values. The forward colour appearance model

with output viewing conditions converts physical radiances to the perceptual coordinates (J Mh0) of the

observation of the reproduction. If J Mh0 matched J Mh, we would believe that the reproduction appears

faithfully identical to the real world. Aiming for high fidelity, we directly map J Mh to J Mh0. Ensuring

that our forward colour appearance and characterisation models are analytically invertible, we apply

these inverse models to J Mh0 we finally achieve high-fidelity colour reproduction on an output medium.
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two different viewing conditions yield identical perceptions, i.e., the reproduction of the real world

appears the same as the original real world. We have introduced an analytically invertible forward

mathematical transform to convert physical quantities to perceptual quantities. Therefore, percep-

tual coordinates are transformable to physical coordinates by using the inverse colour appearance

model. The parameters of the inverse model are set to specify the viewing environment conditions

of the target observation. The converted physical coordinates are reproducible on an output de-

vice by using an inverse device characterisation (from the physical coordinates to the device signals).

This allows us to reproduce metameric colour reproduction with newly given target environmental

conditions (see Figure 6.1).

For instance, colour reproduction of HDR images is achieved by first taking an absolute HDR

radiance map (containing physically meaningful C I EX Y Z values) and applying our CAM, which

yields perceptual attributes, e.g., lightness, colourfulness, and hue (J Mh). These attributes are then

converted to absolute C I EX Y Z for a specific target display and target viewing condition by applying

the inverse CAM. Finally, C I EX Y Z coordinates are transformed into device-dependent coordinates

(e.g., sRGB) for display.

6.1.2 Colour Connection Space

As mentioned earlier, the perceptual coordinates of input/output medium are connected in a per-

ceptual colour space to complete colour reproduction. If we use absolute perceptual coordinates for

colours, we can reproduce such absolute perceptual quantities (e.g, brightness and colourfulness)

on output media. If we use relative perceptual coordinates, we will reproduce only relative colour

coordinates (e.g., lightness and chroma) on output media. We call these Cartesian 3D coordinate

systems colour connection spaces.

As our colour appearance model provides both relative and absolute coordinates of perceptual

colour attributes, we have four different options for a colour connection space to complete colour

communication: (1) brightness, colourfulness, and hue (QMh), (2) brightness, chroma, and hue

(QCh), (3) lightness, colourfulness, and hue (JCh), and (4) lightness, chroma, and hue (JCh).

For a colour connection space, when relative colours are used, the entire colour information in an

image is normalised by the specifications of a target medium. For instance, lightness and chroma

are relative brightness and colourfulness normalised by reference white on a target medium (see

Section 2.3.1 for definitions), and accordingly output brightness and colourfulness depend on the

reference white of the target medium. This means that once we use relative colour coordinates,

we could never achieve absolutely identical reproduction of the source input on the output as long

as we have a white point and colour gamut of the output medium that is different from the real

world. On the other hand, when absolute colours are used, theoretically all colour information is

kept in this colour-connecting stage. However, if the maximum brightness level or colour gamut

of the target medium is lower or smaller than the original, the original colour information could

be saturated by the specifications of the output medium. Thus, if the output medium has a higher

maximum brightness and a wider colour gamut than the source medium, we can use absolute colour
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coordinates. However, if the output produces less brightness and has a smaller colour gamut than

the source input, using relative coordinates is a better choice to avoid significant saturation of the

colour information.

In the experimental context of this thesis, the luminance level of our target LCD display device

(⇠250 cd/m2) is much lower than that of the real world assuming ordinary reproduction conditions

of HDR imaging. Real-world brightness is obviously not reproducible on any of the target media.

Therefore, we decided to use relative coordinates for connecting achromatic colour information by

using lightness. This narrows the possible colour connection spaces to J Mh and JCh colour spaces.

Second, as shown in Section 2.4, our target output device presents an almost identical colour gamut

to the sRGB colour space, which covers most colours in the real world [Pointer, 1982] (see Fig-

ure 2.14). We decided to use absolute coordinates for chromatic information by using colourfulness

instead of chroma. Chroma quantifies the relative intensity of each hue, disregarding absolute

intensity, whereas colourfulness preserves the absolute intensity of each hue (see Section 2.3.1).

Therefore, using colourfulness coordinates is a better choice to reproduce the original colour in-

formation without loss of any information (achieving higher fidelity) with the condition that the

output medium could produce the same colourfulness as the input medium. However, if the gamut

boundary of the output medium is unknown or significantly smaller than that of the input medium,

chroma could be a safer choice for the colour space because we could avoid unpredictable saturation

of the colour information in reproduction although the overall colourfulness would be shrunk or ex-

panded depending on the specification of the output medium with chroma mapping. In summary,

the J Mh colour space is chosen as our main colour connection space considering our experimental

conditions. The perceptual performances of J Mh and JCh are evaluated in Section 6.2.

6.1.3 Parameters

Our forward colour appearance model requires absolute CIEXYZ radiance values with three param-

eters as input: absolute CIEXYZ values of the reference white of the scene, the level of luminance for

global adaptation, and the medium type that is observed. Measuring the absolute CIEXYZ radiance

values of a scene is achievable by using a spectroradiometer or an HDR characterisation method

[Kim and Kautz, 2008a], presented in Chapter 3. The absolute CIEXYZ values of the reference

white of the scene are able to be chosen in an automatic or a manual manner: automatically select-

ing CIEXYZ values of the maximum brightest pixel value or our estimating-illumination method (see

Chapter 3), or manually selecting the reference white point. We conducted manual measurements

of the reference white for our experimental scenes carefully in order to avoid any measurement er-

ror caused by camera noises. For the level of luminance adaptation, we used an averaged luminance

level by using the geometric mean of luminance as it is believed to be a good approximation of the

average luminance [Pattanaik et al., 2000; Reinhard et al., 2002, 2005]. In order to avoid infinite

errors in calculating the geometric mean, we calculated the geometric mean of the luminance by
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using the exponential of the arithmetic mean of log luminances with a minimum value:
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where δ is 1.0E-30, Y is the luminance of each pixel (x , y), and | Y | is the cardinality of Y . The input

medium parameter is decided by which medium is observed. In the case of a real-world scene, we

use a high-luminance LCD display with parameter E = 1.0 [see Equation (5.8)] as this corresponds

to real-world observations (see Chapter 5).

Our inverse colour appearance model requires perceptual colour attributes J Mh or JCh with

three parameters as input: absolute CIEXYZ values of the reference white of an output device, a

level of luminance adaptation of the observation, and a target medium type. For our experimental

conditions, we set the target medium to an sRGB calibrated LCD display (having a peak luminance

level of 250 cd/m2) assuming that the display is observed in dim conditions (10% of the peak lu-

minance level), following [IEC, 2003] for standardised sRGB viewing conditions, i.e., the reference

white of the output device for our inverse colour appearance model was (237.62, 250.00, 272.21)

in CIEXYZ. The level of luminance adaptation level was set to 25 cd/m2. In addition, for a general

purpose target medium, we used the transparent advertising media parameter (E = 1.2175) for a

general sRGB display device with an average surround, which was assumed to have characteristics

between our high-luminance LCD display and a CRT display. Therefore, the printed thesis might

appear differently depending on printer characteristics and its viewing conditions. The following

section demonstrates actual applications of the reproduction of HDR images onto a general sRGB

target medium with comparison to other methods.

6.1.4 Qualitative Results

As mentioned in Chapter 5, our colour appearance model can be used to predict perceptual phenom-

ena. Figure 6.2 demonstrates an example of the simultaneous contrast effect. Our colour appearance

model can be used to match the appearance of images with different backgrounds. The two im-

ages appear identical even though the one on the right is actually lighter and more colourful (see

Section 4.5). This is achieved by modifying the target luminance adaptation level when applying

our colour appearance model. Compared to a black background, a white background increases

luminance adaptation.

In Figure 6.3, we demonstrate media-dependent reproduction. The left image printed on paper

is perceptually equivalent to the right image displayed on an LCD display (assuming a calibrated

device in dim viewing conditions). If both are viewed on an LCD display, the left image appears

brighter. This is due to the fact that luminance perception for paper decreases, and our colour

appearance model compensates for it.

Figure 6.4 qualitatively compares colour reproduction with CIECAM02 [Moroney et al., 2002],

iCAM06 [Kuang et al., 2007], and our model [Kim et al., 2009]. A high-dynamic-range scene is

captured by our HDR camera system and converted into a CIEXYZ radiance map (on an absolute
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Figure 6.2: Appearance matching with respect to the background effect. The two colour charts will

appear similar (assuming that a calibrated display with a gamma of 2.2 in dim viewing conditions).

When comparing the two images without the backgrounds, it can be seen that the right colour chart is

actually lighter and more colourful.

Figure 6.3: Appearance matching with respect to media dependency. Our model can be used to match

colour appearance on different media. Starting from a radiometrically calibrated C I EX Y Z float image

[Kim and Kautz, 2008a], the left image printed on paper will appear very similar to the right image

when displayed on an LCD display (assuming calibrated devices in dim viewing conditions under a

luminance of 119 cd/m2).
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(a) CIECAM02

(b) iCAM06

(c) Our model

Figure 6.4: Qualitative comparison of perceptual predictions of CIECAM02 (top), iCAM06 (middle),

and our model (bottom). As the HDR image contains high-dynamic-range luminances, CIECAM02 fails

to predict visual perception. As can be seen, CIECAM02 is not designed to handle HDR images. iCAM06

is a hybrid model to combine the revised CIECAM02 and an HDR tone-mapping algorithm. Its result

shows halo artefacts on the colour chart and hue deterioration. Measured peak luminance of this scene

was 1 382 cd/m2.
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scale). The peak luminance level of the scene was 1 391 cd/m2. Image (a) shows the result for

CIECAM02, which underestimates the perceived lightness, as observed in qualitative comparison

[see Figure 5.5(b)]. As the HDR image contains high-dynamic-range luminances, CIECAM02 fails

to predict visual perception. As can be seen, CIECAM02 is not designed to handle HDR images.

Image (b) shows a results of iCAM06 (a combination of the revised CIECAM02 and a bilateral tone-

mapping algorithm [Durand and Dorsey, 2002]). Original colourfulness and hue are altered by

the model, and halo artifacts are observed around square patches on the colour chart. Image (c)

presents the result of our model. Our model reproduction is much closer to actual perception with

HDR images as demonstrated in quantitative comparisons (see Section 5.4).

Figures 6.5 and 6.6 compare the use of our colour appearance model for tone-mapping with

CIECAM02, Reinhard et al. [2002]’s method, and iCAM06. Our model’s results are consistent

throughout with good luminance compression. Colours are slightly more saturated than with the

other two models, which is due to our model preserving the original colourfulness impression. Fig-

ures 6.7, 6.8, and 6.9 present more results with ordinary HDR images. The next section describes

quantitative evaluation of the perceptual similarity of our reproduction model to the real scene with

comparison of other methods.

6.2 Experimental Evaluation

We conducted a series of psychophysical experiments to evaluate the fidelity (accuracy) of the repro-

duction of real scenes. Two real scenes were arranged to be compared with their reproductions (on

a calibrated LCD display). Participants were asked to compare the real scene and its reproduction

in terms of how similar to the real scene the reproduction is. The participants produced a five-point

scoring scale by comparing the reproduction to the real scene. The data from this paired comparison

plus category experiments was analysed with Torgerson’s Law of Categorical Judgement [Torgerson,

1958] (extended Thurstone’s Law of Comparative Judgement), as shown in [Kim and MacDonald,

2006; Kuang et al., 2007; Ritschel et al., 2008; Yu et al., 2009].

6.2.1 Stimuli

In order to measure the perceptual similarity of HDR reproductions to real-world scenes, we ar-

ranged two real scenes with high-dynamic-range luminances in a dark room (see Figure 6.10 for

the experimental setup). The scenes were captured by our HDR imaging system (using a Canon

350D camera, see Chapter 3). The HDR images were characterised to produce physically-meaningful

HDR radiance maps in absolute terms [Kim and Kautz, 2008a]. The calibrated HDR radiance maps

(absolute CIEXYZ) were reproduced on a characterised LCD display with three different HDR tone-

mapping algorithms ([Reinhard et al., 2002], [Durand and Dorsey, 2002], and [Reinhard and De-

vlin, 2005]), an image appearance model (iCAM06), and our method (using J Mh and JCh colour

connection spaces). We used an Apple Cinema HD Display 23” monitor with a maximum luminance

of 275.6 cd/m2 whose gamma was calibrated to 2.2 following the sRGB colour specification [IEC,

2003]. Figure 6.11 shows a screen shot of the stimulus. Participants were seated in front of the
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(a) CIECAM02 (b) Reinhard et al. (2002)

(c) iCAM06 (d) Our model

Figure 6.5: Qualitative comparison of visual predictions of (a) CIECAM02, (b) Reinhard et al.’s tone-

mapping algorithm, (c) the iCAM06 image appearance model, and (d) our colour appearance model.

The target display is assumed to be sRGB with a peak luminance level of 250 cd/m2 and a gamma

of 2.2 (dim viewing conditions, adapting luminance is assumed to be 10% of peak luminance). Our

model takes into account not only tone but also original colourfulness. Estimated peak luminance:

13 405 cd/m2. Image courtesy of Paul Debevec.
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(a) CIECAM02 (b) Reinhard et al. (2002)

(c) iCAM06 (d) Our model

Figure 6.6: Qualitative comparison of visual predictions. Absolute HDR radiance maps are tone-

mapped using (a) CIECAM02, (b) Reinhard et al.’s tone-mapping algorithm, (c) the iCAM06 image

appearance model, and (d) our colour appearance model. Different from other methods, our model

does not struggle with local adaptation artefacts like halos. Estimated peak luminance: 1 199 cd/m2.

Image courtesy of Yuanzhen Li.
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(a) Reinhard et al. (2002)

(b) iCAM06

(c) Our model

Figure 6.7: Qualitative comparison of visual predictions of (a) Reinhard et al.’s local tone mapping

(top), (b) an image appearance model, iCAM06, (middle), and (c) our model (bottom). Estimated

peak luminance: 8 774 cd/m2. Image courtesy of Martin Cadik.
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(a) Reinhard et al. (2002)

(b) iCAM06

(c) Our model

Figure 6.8: Qualitative comparison of visual predictions of (a) Reinhard et al.’s local tone mapping

(top), (b) an image appearance model, iCAM06, (middle), and (c) our model (bottom). Estimated

peak luminance: 18 238 cd/m2. Image courtesy of Dani Lischinski.
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(a) Reinhard et al. (2002)

(b) iCAM06

(c) Our model

Figure 6.9: Qualitative comparison of visual predictions of (a) Reinhard et al.’s local tone mapping

(top), (b) an image appearance model, iCAM06, (middle), and (c) our model (bottom). Estimated

peak luminance: 13 437 cd/m2. Image courtesy of Greg Ward.
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screen at a distance of approximately 60–100cm. All stimulus reproductions were presented twice

against a middle-gray background (⇠20% background ratio) in a random order, i.e., each reproduc-

tion is shown twice in each phase with consideration of training and measurement accuracy. The

actual data is averaged from these twice-repeated data. Figure 6.12, 6.13, 6.14, and 6.15 present

the actual reproductions used as visual stimuli for the experiment.

6.2.2 Experimental Procedure

The goal of our psychophysical experiments was to quantify perceptual similarity of reproductions to

their original real scene. The paired comparison plus category method [Scheffé, 1952] was used (see

Figure 6.10), using a five-point scoring scale (see Figure 6.11). The technique is a combination of a

five-point category rating scale and a pair comparison. Participants estimate the difference between

a pair (the real scene and the reproduction) and assign a number to this difference. These categories

are labelled with the following descriptions: (1) not similar, (2) slightly similar, (3) moderately

similar, (4) very much similar, and (5) extremely similar, adapted from [Bartleson, 1984; Meilgaard

et al., 1991].

The paired comparison plus category experiments were conducted in three sessions on two

days. Two different scenes were built and used as stimuli in the same way. Ten colour-normal par-

ticipants took part in each experiment. In the experiments, three of the participants were female

computer scientists with an imaging background; the other participants were male with a com-

puter graphics or science background. The participants were given instructions beforehand which

contained a brief description of the task.

On each day, participants were given a real scene and a series of reproduced scenes in a dark

room (see Figure 6.10 for experimental setting). They were asked to compare the real scene and

the reproduced scene with three criteria. In the first phase, they were asked to assign a score (1–5)

to how similar each reproduction was to the real scene in terms of realism (considering all visual

aspects). In the second, they were asked to score lightness reproduction such as tone, contrast,

lightness, and shadow. In the third, they were asked to score colour reproduction, e.g., how similar

the reproduced colour chart was to the real colour chart.

HDR camera

system

Participant

High-dynamic-range scene Reproduced scene

DarkroomBlack

curtain

Figure 6.10: Schematic diagram of psychophysical experiments for evaluating visual accuracy in

reproductions.
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Figure 6.11: Screen capture of a reproduction stimulus. Participants observed six different reproduc-

tions in a dark room, compared with the captured real scene. The participants were allowed to compare

the real scene and the reproduced scene anytime they felt it necessary. The category of the reproduction

was judged based on their memory.

The experiment was conducted in a controlled environment under dark viewing conditions,

following sRGB standard viewing conditions. Participants were asked to adapt to the illumination

conditions for 5-10 minutes before starting the experiment. The participants were allowed to com-

pare the real scene and the reproduced scene anytime they felt it necessary. The category of the

reproduction was judged based on their memory.

In the experiment, the participants made six estimates (six reproduction methods compared

to a reference for each of the two scenes) in terms of three different criteria: realism reproduction,

lightness reproduction, and colour reproduction for each phase. The same set of stimuli were repeated

seamlessly twice to achieve a higher accuracy (average data was used for analysis). In completing

three phases, participants spent approximately 20–30 minutes. See Table 6.1 for a summary of the

experimental evaluation (see Appendix A.7).

The inter-observer variance of the ten participants of all phases (average variation of each par-

ticipant to an average result) was 14.81%. Three observers repeated the same experiment twice in

order to judge repeatability. The average variation between the two experiments was 12.96%.

6.2.3 Quantitative Results and Analysis

The category experiment yielded similarity scores on a five-point scale relating the reference real

scenes to the reproduced images. We analysed this data using perceptual scaling. The five-point

scores were scaled using the “Law of Categorical Judgement” [Torgerson, 1954, 1958]. This is an
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(a) Durand and Dorsey [2002]

(b) Reinhard et al. [2002]

(c) Reinhard and Devlin [2005]

Figure 6.12: Comparison of perceptual predictions of Durand and Dorsey [2002] (top), Reinhard

et al. [2002] (middle), and Reinhard and Devlin [2005] (bottom). These reproductions are compared

with a real scene as ground truth (scene one).
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(a) iCAM06

(b) Our model (JMh)

(c) Our model (JCh)

Figure 6.13: Comparison of perceptual predictions of iCAM06 (top), our model by using the JMh

colour space (middle), and our model by using JCh colour space (bottom). These reproductions are

compared with a real scene as ground truth (scene one).
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(a) Durand and Dorsey [2002]

(b) Reinhard et al. [2002]

(c) Reinhard and Devlin [2005]

Figure 6.14: Comparison of perceptual predictions of Durand and Dorsey [2002] (top), Reinhard

et al. [2002] (middle), and Reinhard and Devlin [2005] (bottom). These reproductions are compared

with a real scene as ground truth (scene two).
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(a) iCAM06

(b) Our model (JMh)

(c) Our model (JCh)

Figure 6.15: Comparison of perceptual predictions of iCAM06 (top), our model by using the JMh

colour space (middle), and our model by using JCh colour space (bottom). These reproductions are

compared with a real scene as ground truth (scene two).
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Observers Phases Methods Scenes Estimates

Numbers 10 3 6 2 72

Table 6.1: Summary of our evaluation experiment. In each phase, six reproductions were shown twice.

Two scenes were used. Each participant totalled 72 estimations, which took approximately 20–30

minutes per participant.

extension to Thurstone [1959]’s pair-comparison scaling that allows for several categories. First,

the frequency matrix FM of N participants for each score was computed for each reproduction.

A cumulative frequency matrix was then computed from the lowest score to the highest score.

A logistic psychometric model LG (following Condition D in the Law of Categorical Judgement —

assuming that all the discriminal dispersions and correlations are constant, independent of category

or sample [Engeldrum, 2000]), was derived from the cumulative frequency matrix:

LG= ln
✓

FM+1/2

N−FM+1/2

◆

. (6.2)

Also, from the normalised frequency matrix FM, z scores were computed through the normal-inverse

statistic function. Then, a linear least squares-fit was used to find the best fit from the LG to the

z scores (see Figure 6.16 for an example). The difference of the response scales for each method

between neighbouring categories were averaged to find category boundary estimates. Finally, the dif-

ferences between category boundary estimates and response scales yields perceptually-uniform scales

for the given stimuli [Morovic, 2008]. These scale values can be related to the original categories

(from not similar to extremely similar). The estimated scale values are on a perceptually-uniform

scale, which allows one to judge relative differences in similarity of the reproduced HDR images to

the captured real-world scene. The results are summarised with estimated category boundaries in

Figures 6.18 (see Figure 6.12 and 6.13 for actual stimuli) and 6.19 (see Figure 6.14 and 6.15).

y = 0.6422x
R² = 1

-1.5

-1

-0.5

0

0.5

1

-2 -1 0 1 2

z-
sc
or
e

LG

z-score

Linear (z-score)

Figure 6.16: An example of a linear least-squares fit from LG to z-score (from a phase of lightness

reproduction in scene two).
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(a)
1 2 3 4 5

Our model (JCh)

Our model (JMh)

iCAM06

Reinhard&Devlin

Reinhard et al.

Durand&Dorsey

Scene one (overall)

Category score

(b)
1 2 3 4 5

Our model (JCh)

Our model (JMh)

iCAM06

Reinhard&Devlin

Reinhard et al.

Durand&Dorsey

Scene two (overall)

Category score

Figure 6.17: Overall quantitative comparison of visual predictions of Durand and Dorsey [2002],

Reinhard et al. [2002], Reinhard and Devlin [2005], iCAM06, and our model (J Mh and JCh colour

spaces) with real scenes (scene one and two). Our J Mh model has overall mean of category scores

significantly different from other five methods in both scenes (one-way ANOVA, F-test, alpha=0.05):

(scene one) F-value=34.48, p-value=0.0, (scene two) F-value=59.77, p-value=0.0. The dotted lines

indicate 95% confidence interval. It is compared in terms of the reproductions of realism, lightness, and

colourfulness. Descriptions of scores: (1) not similar, (2) slightly similar, (3) moderately similar, (4)

very much similar, and (5) extremely similar.
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Figure 6.18: Quantitative comparison of visual predictions of Durand and Dorsey [2002], Reinhard

et al. [2002], Reinhard and Devlin [2005], iCAM06, and our model (J Mh and JCh colour spaces)

with a real scene (scene one). It is compared in terms of the reproductions of realism, lightness, and

colourfulness. Descriptions of scores: (1) not similar, (2) slightly similar, (3) moderately similar, (4)

very much similar, and (5) extremely similar.
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Figure 6.19: Quantitative comparison of visual predictions of Durand and Dorsey [2002], Reinhard

et al. [2002], Reinhard and Devlin [2005], iCAM06, and our model (J Mh and JCh colour spaces)

with a real scene (scene two). It is compared in terms of the reproductions of realism, lightness, and

colourfulness. Descriptions of scores: (1) not similar, (2) slightly similar, (3) moderately similar, (4)

very much similar, and (5) extremely similar.
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Our reproductions using the J Mh colour connection space were all considered very much sim-

ilar to the reference scene in all scenes. Our J Mh method statistically significantly outperforms the

other methods in all phases of all scenes (one-way ANOVA, F-test, alpha=0.05). See Figure 6.17.

Our reproductions using the JCh colour space were considered very much similar or moderately

similar. Our JCh method mostly outperforms the other methods. However, its performance was

significantly lower than our J Mh method in all cases. In one phase of realism reproduction in scene

two, our JCh method presents similar but better performance than iCAM06. Reinhard et al. [2002]

shows a better performance than our JCh method in one phase of colour reproduction in scene two.

6.3 Discussion

As shown in Figure 6.18 and 6.19, the performance of the presented HDR tone-mapping algorithms

depends on the scene. Scene one contains fewer objects than scene two but has more obvious colour

samples and luminance changes (e.g., light and shadow). In post interviews, the participants said

that they felt the task was much easier for scene one as the shadow and colour differences (using the

colour chart as a reference) were more obvious than in scene two. Participants felt more confident

in judging the similarity of colourfulness (with scene one) by comparing the colour chart in the real

scene to that in the reproductions. Participants commented that the overall change in luminances in

scene one is clearer than that of scene two (see Figure 6.12, 6.13, 6.14, and 6.15) and this helped

lightness judgement. Scene two contains more ordinary objects than scene one but does not contain

any standard object like the GretagMacbeth ColorChecker. As shown in Figure 6.19, participants

felt the reproductions of a few tone-mapping algorithms (Reinhard et al. [2002] and iCAM06) were

more similar to the real scene in scene two than in scene one. These two methods were ranked

between slightly similar and moderately similar in scene one, but were ranked between moderately

similar and very much similar in scene two. Their performance became closer to that of our JCh

method. This indicates that our JCh method may not distinctively outperform the other methods

with ordinary scenes (e.g., without standard objects like a colour chart). However, the performance

of our J Mh method was ranked top in all scenes with statistical significance.

Our reproduction system using the J Mh colour connection space significantly outperforms

other methods as our pipeline takes perceptual transformation of colour attributes into account.

The 1:1 perceptual mapping in our J Mh colour space yields high-fidelity colour reproduction. How-

ever, our system has limitations when used with current HDR imaging technology. First, current

available HDR images have been generated using uncalibrated HDR imaging systems. This means

that our J Mh reproduction system is not fully compatible with existing HDR images. Hence, in order

to obtain absolute scale in uncalibrated HDR images, we empirically scale existing HDR images to

reasonable levels (see Figure 6.5). The complete application requires characterisation procedures

for input/output devices [Kim and Kautz, 2008a]. In addition, if the specification of an output

device is not available (e.g., non sRGB colour device), our JCh model may be a safer choice for

colour reproduction on unknown devices. In this case, the colourfulness intensity will depend on

the colour specifications of the output medium.
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The scope of this thesis limits the mapping from an input to an output colour gamut as a direct

1:1 mapping. Colours outside the target gamut were simply clamped. This enables the faithful

reproduction of perceived colours with high fidelity such that they are inside the gamut. However,

it does not include any image enhancement for out-of-gamut colours. If we would like to improve

the preference of users, rather than faithfulness in reproduction, it would be interesting to study a

gamut mapping algorithm that scales and adapts perceptual colours intelligently.

As shown in Equation (6.1), we calculate the average luminance adaptation by employing the

geometric mean, which is empirically believed to work well for tone-mapping [Reinhard et al.,

2005]. However, the actual mathematical relationship between the geometric mean and the spatial

coherence of the luminance adaptation is currently unknown. This would be worth studying in

the future. In addition, the impact and correlation between luminance adaptation and surround

luminance levels is not explored in this thesis.

6.4 Summary

This chapter presented a novel HDR imaging pipeline that is built on our HDR characterisation

method and colour appearance model. It also describes the psychophysical evaluation of the repro-

duction performance, compared with other HDR tone reproduction and image appearance models.

A series of psychophysical experiments were conducted to quantify the perceptual similarity of the

reproductions to the reference real scene. As a result, the proposed colour reproduction system,

called the J Mh colour space model, outperformed other HDR tone reproduction methods and an

image appearance model with statistical significance. This result cross-validates the quantitative

evaluation of our colour appearance model (see Chapter 5). Consequently, our J Mh colour repro-

duction system provides a good basis for high-fidelity colour reproduction for high-dynamic-range

imaging.
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Chapter 7

Discussion and Future Work

The aim of this thesis was to develop a colour reproduction system for high-dynamic-range (HDR)

imaging. Classical colour reproduction systems fail to reproduce HDR images because the current

characterisation methods and colour appearance models (CAM) fail to cover the dynamic range of

luminance in HDR images. HDR tone-mapping algorithms have been developed to reproduce HDR

images on low-dynamic-range (LDR) media such as LCD displays. However, these models have

been based on theoretical assumptions, due to a lack of physical and psychological measurements.

Hence, we revisited the key infrastructure of classical colour reproduction elements (the charac-

terisation method and the colour appearance model), reformulating them for high-dynamic-range

imaging through a series of physical and psychological experiments. To this end, the most essential

elements of colour reproduction, the device characterisation and the colour appearance model, were

investigated with respect to high-dynamic-range imaging. First, our HDR characterisation method

enables us to measure high-dynamic-range radiances to a high accuracy, competing with very ex-

pensive spectroradiometers in accuracy (Chapter 3). Second, modelling colour appearance requires

significant effort to prepare before the mathematic development. We firstly built a high-luminance

display to obtain a controllable high-luminance viewing environments. We conducted a psychophys-

ical experiment on this display to measure colour appearance attributes of human colour perception

(Chapter 4). A novel numerical model was derived from a novel experimental data set, which cov-

ers the full range of the human visual system (Chapter 5). Our colour appearance model predicts

perceptual colour attributes under high luminance levels to a high accuracy. Finally, our colour re-

production system is built on our novel HDR characterisation and colour appearance models. This

system outperforms other HDR reproduction methods with statistical significance (Chapter 6). The

following sections summarise findings and discuss each chapter.

7.1 High-Dynamic-Range Characterisation

Current camera characterisation methods for low-dynamic-range camera systems were established

with classical colorimetry, which interprets a colour with three essential elements: a light source,

an object, and an observer. These characterisation models were numerically derived from a set of

physical measurements of reflective colour samples and camera responses to the physical radiation.
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A light source is required to obtain camera responses from the reflective targets. The numerical

transform of the characterisation model bakes the actual spectral characteristics into the characteri-

sation model. The imaging sensor of the digital camera is illuminated by radiant power, which is the

sum of the product of the spectral energy of the light source and reflectance property of the target

surface. Therefore, separate measurements of the light source and reflectance for building a charac-

terisation model are not only redundant, but also contribute to worse performance and luminance

dependency as in previous characterisation methods.

Our scientific insights into characterisation are that the reflective targets only offer a low dy-

namic range which make them a bad choice for HDR imaging, and that characterisation based on

reflective targets requires both the reflectance of the target and the spectrum of the illuminant to

be known. Therefore, we proposed the use of a novel back-lit transparency colour target, specifi-

cally designed for HDR imaging, offering a higher dynamic range and wider colour gamut. Thus,

our characterisation method only requires the emitted radiant power to be known, which can be

measured using a spectroradiometer. This enables us to accurately characterise a digital camera

used for HDR imaging. The achieved accuracy of the characterised HDR camera system is similar to

the accuracy of a spectroradiometer. Our characterisation model transforms HDR RGB images into

physically-meaningful CIEXYZ radiance maps in absolute scale. The captured CIEXYZ radiance can

be white-balanced by our illuminant estimation method for display. In addition, the combination

of a new transparency colour target, HDR imaging, and characterisation theory yields significantly

higher accuracy in measuring real-world radiation. The big advantage using our HDR characteri-

sation method is that such highly-accurate measurement is provided not at a point as with a spec-

troradiometer but as an whole image. This provides greater efficiency in measuring radiance when

compared to a spectroradiometer.

The performance of our characterisation method depends on the optical quality of the digital

camera, including lens flare, vignetting, veiling glare, and the infrared filter. Modelling these optical

phenomena is worth future study. Also, the measurement used in our method returns radiometric

CIEXYZ values, not radiance at each wavelength. This means that our method still allows potential

measurement errors with metameric colours as is the case with any other target-based models.

7.2 High-Luminance Colour Experiments

Our HDR characterisation method interprets colour specifications of device-dependent HDR RGB im-

ages into highly accurate and physically-meaningful radiance values in the form of absolute CIEXYZ.

However, this is not sufficient for HDR colour reproduction as the given physical colours are per-

ceived differently under different viewing environment conditions. Therefore, perceptual attributes

need to be measured and modelled to allow for HDR colour reproduction.

Colour appearance modelling was developed to predict colour appearance attributes under

given viewing conditions. CAMs interpret physical colours perceptually. Colour appearance mod-

els have previously been derived numerically from experimental measurements of colour appear-

ance. However, currently-available colour appearance measurements present only a limited dy-
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namic range of luminance. The range of colours in the available data sets are at most three orders

of magnitude. This was limited by the available display technology in the early 1990s. Therefore,

a novel high-luminance display device was built to yield a controllable high-luminance viewing

environment, where a series of psychophysical experiments were conducted to produce colour ap-

pearance data under high luminance levels up to five-order magnitude (covering the dynamic range

of the human visual system).

From the high-luminance colour experiments, we found that if the luminance level increases,

then lightness and colourfulness both increase. This confirms the Stevens and Hunt effects. In

contrast, if the background luminance level increases, lightness and colourfulness both decrease,

confirming the simultaneous contrast effect. Most of our findings are consistent with previous colour

appearance data sets under low luminance, and similar trends can be observed in both data sets.

However, the previous data sets quantify these colour appearance phenomena to at most three

orders of magnitude of luminance (690 cd/m2), but our data set covers luminance up to five orders

of magnitude of luminance (16 860 cd/m2).

Although our colour appearance data includes fewer different media than previous appearance

data and less variation in colour temperature, it covers five orders of magnitude of luminance. The

range of the experimental data corresponds to the working range of the human visual system. This

experimental data set enables us to derive a novel colour appearance model for an extended range

of luminance levels. Accordingly, our numerical model covers the full range of colour perception of

the human visual system.

7.3 Colour Appearance Model

A colour appearance model describes a conversion from physical measurements to perceptual quan-

tities. This conversion differs amongst existing CAMs and involves numerical transfer functions that

are matched to psychophysical observation data. Our CAM is mainly derived from our observa-

tion data under high-luminance levels. Our model is based on two insights. First, the modelling

approaches of current CAMs are based on classical colourimetry using relative colour coordinates.

As shown in our colour experiments, colour perception changes according to the absolute levels of

luminances. Modelling and optimisation in our model were based on absolute-scaled quantities of

physical measurements. Second, a physiologically-derived cone response function [Valeton and van

Norren, 1983] has been broadly used in existing CAMs. This function has two parameters. One

parameter was previously taken from primate measurements. In contrast, our CAM uses this data

and optimises the cone model purely based on our high-luminance experimental observations. The

other parameter is modelled as a constant in other CAMs and differs amongst existing CAMs. How-

ever, through investigation of physiological literature, we found that this parameter should change

dynamically according to the level of luminance adaptation, which we adopt in our model. Our

cone response function enables us to cover the full working range of the human visual system and

to predict the simultaneous contrast effect with various level of luminance adaptation.

As a result, the lightness and colourfulness predictions of our model were statistically signifi-
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cantly better than the predictions of the other models and also very consistent up to high level of

luminances. The variation of the predictions on the test data sets reaches that of the psychological

measurements. This means that it would be difficult to achieve a better lightness and colourfulness

prediction than that from our model. Hue predictions were almost identical with current standard

models. Our model was also tested on previous appearance data, which allows us to cross-validate

our model’s performance on different media such as paper, transparency, or CRT. Our model outper-

formed the other CAMs even with this data set, presenting similar accuracy to that of our CAM with

our high-luminance data set.

Our psychophysical experiments and colour appearance model focused on high-luminance pho-

topic vision rather than mesopic or scotopic vision as our research was motivated by the advent of

high-dynamic-range imaging, which deals with higher levels of luminance. Therefore, our model

does not include the contribution of rods under dark luminance conditions. Our model also does

not take a separate background parameters because we believe that the explicit measurement of lu-

minance in a 10◦ viewing angle already includes the background luminance level implicitly, which

is confirmed in our result variation (measurement data is fitted well by our model). We also do not

include a separate surround parameter, as our data and previous experiments (see Section 4.5.8)

showed that this parameter has no significant influence on perception.

As is well known from previous research, colour appearance depends on the medium. Con-

sidering our research goal, we chose high-luminance and high-dynamic-range media rather than

reflective media. Furthermore, our research scope does not include chromatic adaptation experi-

ments, and we rely on previous CAT models. This is a worthwhile area for future study. Eye ball

movement and light scattering within the eye may be an interesting direction of study. Our research

scope focuses on 2◦ colour perception (sensed by the fovea, the main concentration of colour re-

ceptors, that comprises approximately 2◦ diameter of the visual field [Hunt, 1998]) rather than 10◦

perception (sensed by the fovea and rods together before the blind spot in a 10-12◦ diameter of the

visual field). Using 10◦ observations, reflective media, increasing variation in surround conditions,

and mesopic/scotopic-level luminances are all worth future study.

7.4 High-Dynamic-Range Colour Reproduction

Our HDR characterisation method enables us to convert device-dependent HDR images to

physically-meaningful radiance maps. Our colour appearance model allows us to convert physical

coordinates to perceptually-uniform colour appearance attributes. These perceptual coordinates

from the forward application of our model are reproducible on a target medium with new viewing

parameters as input. With colour reproduction in mind, we developed all our model equations to

have analytical invertibility. Our inverse CAM is able to convert perceptual coordinates back to

physical quantities. These physical quantities are easily reproducible using inverse output device

characterisation. This completes the pipeline for image reproduction of the real world onto a target

medium.

We conducted a series of psychophysical experiments to evaluate accuracy of real-world repro-



7.4. High-Dynamic-Range Colour Reproduction 182

duction. Real scenes were built to be compared with their reproductions. Our reproduction system

using the J Mh colour connection space outperforms other reproduction methods with statistical

significance in all scenes, as our system takes into account perception under high luminance. These

experimental results match the previous quantitative results of our CAM for cross-validation.

Our colour reproduction system is fully independent of existing HDR imaging systems. The

entire pipeline needs to be used in order to achieve high-fidelity reproduction as our method su-

persedes existing HDR methods. The scope of this thesis did not include gamut mapping and we

use direct 1:1 mapping. This enables the faithful reproduction of the perceived colours with high

fidelity. A user preference study, called a gamut mapping algorithm, can be a worthwhile area for

future study. In addition, the numerical relationship between the averaged luminance adaptation

and its spatial coherence within vision is worth studying in the future.
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Chapter 8

Conclusion

The focus of this thesis has been the development of a colour reproduction system for high-dynamic-

range imaging, which enables us to reproduce the visual perception of the human visual system on

any target medium. With this context, we revisited the key infrastructure of classical colour re-

production elements, reformulating them for high-dynamic-range imaging. We developed an HDR

characterisation method that enables us to measure high-dynamic-range radiances to a high ac-

curacy. This method measures the physical radiance values of the real world as an image with

significant accuracy, rivaling spectroradiometers. This allows us to obtain physically-meaningful

HDR radiance maps with a standard digital camera. However, this is not sufficient for HDR colour

reproduction as the given physical colours under high luminance ranges are perceived differently

due to their viewing environment conditions. Hence, we built a novel high-luminance display and

conducted a psychophysical experiment to measure the perceptual colour attributes under a wide

range of luminance levels. This enables us to quantify human perception, covering the full range

of the human visual system. A novel colour appearance model was then derived from the experi-

mental data. Our model predicts perceptual colour attributes of lightness and colourfulness under

high luminance levels with significant accuracy. This completes the colour reproduction pipeline

with respect to high-dynamic-range imaging. Finally, our reproduction system was built on these

fundamental contributions, our novel HDR characterisation and colour appearance models. A psy-

chophysical evaluation showed that our HDR reproduction system outperforms other methods with

statistical significance. Our colour reproduction system provides high-fidelity colour reproduction

for high-dynamic-range imaging.
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Appendix A

Supplementals

A.1 Notation

L . . . . . . . . . . . . . . . . . . . . . . Radiance (luminance), I . . . . . . . . . . . . . . . . . . . . . . . . . . . Radiant intensity,

F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Luminous flux, Φ . . . . . . . . . . . . . . . . . . . . . . . Radiant power (flux),

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Radiosity, P . . . . . . . . . Spectral power distribution of light,

E . . . . . . . . . . . . . . . . . . . .Irradiance (Illuminance), S . . . . . . Surface reflectance (or transmittance),

!i . . . . . . . . . . . . . . . . . . . . . . . . Incoming direction, !o . . . . . . . . . . . . . . . . . . . . . . . .Outgoing direction,

Km .Maximum photographic luminous efficacy, M,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matrices,

M−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse matrix, M> . . . . . . . . . . . . . . . . . . . . . . Matrix transposition,

M ·N . . . . . . . . . . . . . . . . . . . .Matrix multiplication, λ . . . . . . . . . . . . . . . . . . . . . . . . . . Wavelength [nm],

J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lightness, M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Colourfulness,

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hue quadrature, Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brightness,

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chroma, h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hue angle,

aC . . . . . . . . . Cartesian coordinate of red–green, bC . . . . . . . Cartesian coordinate of yellow–blue,

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saturation, A . . . . . . . . . . . . . . . . . . . . . . . . . . Achromatic signal,

a . . . . . . . Colour opponent signals of red–green, b . . . . . Colour opponent signals of yellow–blue,

∆E⇤ab . . . . . . . . . . . . Colour difference in CIELAB, ∆E00 . . . . . . . . . Colour difference (CIEDE2000).

A.2 Relative Camera Transforms

Forward transform

R G B

X 0.5730 0.2459 0.0243

Y 0.2486 0.9000 -0.1486

Z 0.0459 -0.1865 0.9108

Inverse transform

X Y Z

R 2.0085 -0.5795 -0.1481

G -0.5915 1.3206 0.2312

B -0.2223 0.2996 1.1528

Table A.1: Relative characterisation for Canon 350D. The forward transform for Canon 350D was

computed from reference colour samples and corresponding input radiance.
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A.3 Physical Measurements in HDR Characterisation
Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

1 A1 62.07 55.00 41.80 0.2452 0.4889 61.29 54.78 45.81 0.2403 0.4832

2 A2 74.51 52.30 34.86 0.3093 0.4885 72.08 52.05 38.09 0.2981 0.4844

3 A3 85.72 51.15 30.13 0.3635 0.4880 83.24 53.10 33.44 0.3398 0.4876

4 A4 95.19 43.70 20.02 0.4696 0.4851 97.18 51.87 23.59 0.4109 0.4935

5 A5 249.08 223.40 163.09 0.2436 0.4917 239.85 212.94 165.53 0.2441 0.4876

6 A6 274.88 207.10 133.65 0.2907 0.4928 269.27 208.48 138.88 0.2825 0.4921

7 A7 315.96 201.30 115.16 0.3433 0.4922 309.22 205.33 124.13 0.3288 0.4913

8 A8 351.65 188.70 90.75 0.4072 0.4916 350.27 203.21 103.26 0.3778 0.4932

9 A9 661.76 684.00 507.90 0.2127 0.4946 637.25 660.40 502.79 0.2115 0.4932

10 A10 692.45 671.60 481.01 0.2269 0.4951 672.97 651.20 479.57 0.2266 0.4933

11 A11 707.64 643.60 442.52 0.2422 0.4955 690.25 630.87 452.93 0.2398 0.4932

12 A12 775.76 630.60 396.90 0.2716 0.4967 752.35 624.11 396.62 0.2662 0.4969

13 A13 1536.87 1754.00 1429.26 0.1913 0.4912 1448.50 1679.81 1381.64 0.1882 0.4910

14 A14 1705.22 1876.00 1516.60 0.1983 0.4909 1573.24 1745.80 1374.06 0.1974 0.4928

15 A15 1718.63 1913.00 1403.91 0.1985 0.4972 1625.68 1823.93 1316.89 0.1974 0.4984

16 A16 1691.10 1910.00 1489.51 0.1943 0.4938 1571.64 1796.83 1326.75 0.1934 0.4975

17 A17 1735.75 1914.00 1487.13 0.1989 0.4935 1593.96 1749.30 1339.92 0.2002 0.4943

18 A18 1667.42 1893.00 1375.70 0.1951 0.4983 1470.06 1660.50 1206.57 0.1960 0.4982

19 A19 1635.99 1816.00 1520.63 0.1957 0.4888 1484.88 1654.36 1355.82 0.1956 0.4903

20 A20 139.73 69.14 49.70 0.4215 0.4693 135.13 75.67 52.68 0.3785 0.4768

21 A21 563.15 419.80 314.33 0.2887 0.4842 518.17 391.66 295.22 0.2848 0.4843

22 A22 1129.88 1117.00 680.27 0.2268 0.5045 1027.31 1009.54 633.15 0.2274 0.5028

23 B1 89.74 82.78 51.33 0.2417 0.5016 89.97 82.36 57.19 0.2404 0.4952

24 B2 107.30 84.73 35.98 0.2888 0.5131 106.04 84.60 43.89 0.2815 0.5053

25 B3 125.88 87.83 24.25 0.3321 0.5214 121.11 88.15 31.32 0.3151 0.5161

26 B4 143.16 80.74 2.83 0.4202 0.5332 142.27 86.02 9.81 0.3893 0.5295

27 B5 336.62 316.30 183.19 0.2391 0.5056 327.33 304.71 188.12 0.2397 0.5021

28 B6 365.03 297.90 120.40 0.2811 0.5161 357.58 294.29 132.46 0.2767 0.5124

29 B7 402.06 283.60 74.66 0.3296 0.5230 396.35 286.82 92.62 0.3186 0.5187

30 B8 442.68 260.20 35.90 0.3976 0.5258 440.29 275.90 55.78 0.3711 0.5232

31 B9 810.86 859.30 614.60 0.2087 0.4975 792.55 825.11 606.72 0.2115 0.4954

32 B10 832.46 845.10 540.55 0.2201 0.5027 820.97 823.40 550.50 0.2215 0.4999

33 B11 832.20 807.50 471.41 0.2318 0.5061 822.38 794.46 483.83 0.2318 0.5039

34 B12 922.23 814.50 359.25 0.2595 0.5156 905.39 799.19 373.52 0.2584 0.5133

35 B13 1458.45 1705.00 1462.16 0.1857 0.4884 1402.16 1647.50 1369.41 0.1856 0.4906

36 B14 1544.23 1610.00 1413.15 0.2064 0.4841 1473.92 1555.87 1313.97 0.2050 0.4870

37 B15 1682.46 1887.00 1187.28 0.2006 0.5062 1580.56 1784.79 1124.01 0.1993 0.5063

38 B16 1359.44 1526.00 1196.96 0.1953 0.4933 1323.02 1498.13 1170.19 0.1938 0.4938

39 B17 1566.54 1652.00 1209.22 0.2091 0.4960 1462.77 1537.75 1158.15 0.2089 0.4942

40 B18 1505.11 1783.00 1230.39 0.1885 0.5024 1418.09 1660.18 1162.56 0.1903 0.5013

Table A.2: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright-side IT8.7/1

– patch index: 1-40).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

41 B19 1438.32 1601.00 1479.45 0.1925 0.4820 1326.12 1478.13 1357.06 0.1924 0.4825

42 B20 123.06 79.54 31.62 0.3489 0.5073 120.28 83.02 40.99 0.3232 0.5020

43 B21 382.46 269.80 100.32 0.3234 0.5133 364.02 259.57 113.29 0.3167 0.5081

44 B22 743.61 678.90 374.95 0.2468 0.5070 687.28 626.56 359.23 0.2463 0.5051

45 C1 179.17 182.90 103.80 0.2216 0.5090 175.59 175.98 110.64 0.2232 0.5032

46 C2 194.16 186.20 69.29 0.2431 0.5245 189.39 180.15 78.38 0.2423 0.5185

47 C3 209.88 189.10 41.30 0.2648 0.5368 202.51 180.43 50.63 0.2646 0.5305

48 C4 221.93 183.00 7.42 0.2970 0.5510 212.04 177.56 12.38 0.2912 0.5487

49 C5 633.05 647.00 323.02 0.2239 0.5150 635.20 635.92 340.53 0.2269 0.5112

50 C6 648.79 621.50 181.47 0.2468 0.5319 654.88 626.96 199.48 0.2458 0.5294

51 C7 682.13 610.00 92.34 0.2699 0.5431 677.16 607.72 109.55 0.2676 0.5404

52 C8 742.59 592.10 13.75 0.3073 0.5513 706.87 564.46 19.64 0.3062 0.5502

53 C9 963.61 1042.00 697.37 0.2063 0.5019 950.18 998.07 709.28 0.2106 0.4977

54 C10 960.63 1018.00 582.37 0.2137 0.5096 942.98 995.44 599.42 0.2134 0.5069

55 C11 973.57 1002.00 475.51 0.2234 0.5174 968.29 983.64 490.16 0.2253 0.5149

56 C12 1054.88 995.20 227.79 0.2532 0.5374 1029.45 983.47 250.09 0.2491 0.5354

57 C13 1371.93 1663.00 1498.88 0.1781 0.4857 1336.75 1649.87 1407.92 0.1764 0.4899

58 C14 1458.92 1449.00 1407.14 0.2129 0.4757 1402.82 1384.45 1351.37 0.2140 0.4751

59 C15 1703.74 1909.00 989.48 0.2046 0.5158 1640.46 1848.88 961.51 0.2034 0.5158

60 C16 1102.99 1233.00 955.53 0.1964 0.4940 1088.48 1194.15 943.90 0.1994 0.4923

61 C17 1387.87 1386.00 959.97 0.2215 0.4978 1340.95 1331.81 940.15 0.2222 0.4966

62 C18 1377.55 1709.00 1051.47 0.1827 0.5099 1327.24 1613.51 1000.99 0.1861 0.5089

63 C19 1226.63 1365.00 1466.04 0.1880 0.4707 1133.42 1253.52 1290.49 0.1904 0.4739

64 C20 309.09 241.30 39.59 0.3055 0.5366 296.64 233.25 54.21 0.2998 0.5304

65 C21 519.28 517.20 265.63 0.2289 0.5130 496.30 486.50 263.16 0.2313 0.5101

66 C22 629.10 567.00 254.77 0.2542 0.5155 586.77 526.34 255.99 0.2537 0.5121

67 D1 121.49 131.20 76.63 0.2095 0.5091 123.57 130.05 84.46 0.2123 0.5028

68 D2 123.00 132.90 49.69 0.2172 0.5279 124.15 131.90 58.35 0.2180 0.5212

69 D3 124.49 136.40 30.18 0.2202 0.5429 127.44 135.97 37.48 0.2236 0.5369

70 D4 124.64 136.90 7.84 0.2264 0.5596 122.64 132.61 10.14 0.2290 0.5571

71 D5 486.96 539.00 271.90 0.2075 0.5167 507.36 553.00 287.39 0.2100 0.5150

72 D6 476.63 532.10 149.27 0.2141 0.5377 479.92 537.68 162.01 0.2126 0.5358

73 D7 453.86 511.60 73.12 0.2175 0.5516 445.41 502.70 79.18 0.2167 0.5502

74 D8 453.52 518.20 17.21 0.2191 0.5634 433.33 489.29 7.30 0.2224 0.5650

75 D9 1111.98 1241.00 613.08 0.2062 0.5179 1081.20 1189.82 627.83 0.2078 0.5145

76 D10 1086.73 1223.00 346.66 0.2123 0.5377 1078.51 1198.42 370.50 0.2139 0.5348

77 D11 1048.63 1185.00 171.48 0.2169 0.5515 1065.41 1188.01 176.34 0.2195 0.5507

78 D12 1060.35 1212.00 67.87 0.2181 0.5610 1019.54 1161.55 47.54 0.2194 0.5625

79 D13 1304.36 1623.00 1522.87 0.1727 0.4834 1288.30 1618.15 1480.31 0.1718 0.4854

80 D14 1387.78 1315.00 1386.15 0.2197 0.4683 1343.14 1272.77 1329.41 0.2200 0.4690

Table A.3: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright-side IT8.7/1

– patch index: 41-80).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

81 D15 1689.15 1897.00 798.97 0.2076 0.5247 1691.36 1923.33 795.53 0.2055 0.5257

82 D16 840.61 936.20 712.42 0.1975 0.4950 861.79 933.98 721.79 0.2023 0.4934

83 D17 1225.97 1153.00 726.33 0.2369 0.5013 1219.78 1136.97 750.30 0.2377 0.4985

84 D18 1259.78 1616.00 842.58 0.1798 0.5189 1212.71 1530.33 831.40 0.1819 0.5166

85 D19 1036.21 1149.00 1395.34 0.1846 0.4605 977.00 1085.54 1290.35 0.1849 0.4623

86 D20 83.71 87.95 38.04 0.2207 0.5218 87.66 87.92 47.72 0.2263 0.5106

87 D21 754.43 750.40 43.67 0.2485 0.5562 702.43 695.24 46.44 0.2493 0.5552

88 D22 981.35 1142.00 1369.00 0.1767 0.4626 877.69 1012.16 1230.30 0.1777 0.4612

89 E1 166.93 194.60 111.49 0.1952 0.5120 170.41 193.09 123.02 0.1984 0.5058

90 E2 156.30 197.00 73.29 0.1877 0.5322 158.53 191.51 86.67 0.1927 0.5237

91 E3 142.09 198.20 46.45 0.1746 0.5481 145.52 194.63 53.74 0.1804 0.5430

92 E4 131.04 207.00 12.33 0.1601 0.5692 129.32 201.89 7.33 0.1627 0.5714

93 E5 695.18 835.70 429.02 0.1915 0.5181 724.04 847.47 458.36 0.1955 0.5150

94 E6 613.05 804.10 266.13 0.1820 0.5371 636.36 814.45 288.34 0.1856 0.5343

95 E7 559.20 801.90 151.07 0.1715 0.5534 565.34 806.92 145.84 0.1725 0.5541

96 E8 507.96 787.20 81.79 0.1618 0.5640 500.57 778.51 63.27 0.1619 0.5665

97 E9 1102.24 1277.00 815.66 0.1942 0.5062 1095.99 1269.32 807.86 0.1943 0.5064

98 E10 1024.48 1247.00 618.44 0.1899 0.5199 1035.48 1240.58 659.16 0.1916 0.5164

99 E11 956.07 1213.00 485.20 0.1856 0.5298 989.63 1258.73 515.00 0.1848 0.5290

100 E12 915.95 1239.00 343.54 0.1784 0.5431 914.79 1226.43 352.79 0.1796 0.5419

101 E13 1235.53 1577.00 1531.82 0.1676 0.4813 1240.89 1599.82 1525.77 0.1665 0.4829

102 E14 1283.05 1152.00 1319.84 0.2279 0.4603 1281.34 1147.15 1273.59 0.2297 0.4628

103 E15 1683.11 1885.00 655.51 0.2109 0.5314 1698.82 1909.29 690.20 0.2097 0.5302

104 E16 634.64 706.20 542.36 0.1975 0.4944 656.85 718.90 572.47 0.1997 0.4917

105 E17 1075.93 945.60 559.26 0.2541 0.5025 1080.41 954.86 573.35 0.2524 0.5019

106 E18 1141.92 1508.00 684.15 0.1769 0.5258 1136.84 1484.65 696.13 0.1784 0.5241

107 E19 862.38 949.40 1329.85 0.1807 0.4475 836.24 888.61 1298.54 0.1852 0.4428

108 E20 198.26 249.80 47.47 0.1940 0.5500 193.42 236.08 55.18 0.1984 0.5448

109 E21 622.21 790.20 166.41 0.1918 0.5481 598.15 751.87 168.19 0.1933 0.5466

110 E22 246.03 498.90 339.87 0.1125 0.5132 254.58 482.17 344.01 0.1195 0.5094

111 F1 112.89 143.10 103.19 0.1758 0.5013 121.64 145.14 118.25 0.1834 0.4923

112 F2 95.31 143.30 86.56 0.1522 0.5150 107.49 148.67 100.25 0.1630 0.5072

113 F3 80.48 144.30 79.26 0.1297 0.5231 92.86 150.92 94.60 0.1407 0.5144

114 F4 60.92 143.00 62.22 0.1018 0.5379 74.92 152.21 74.99 0.1160 0.5303

115 F5 338.96 446.50 304.10 0.1706 0.5056 355.91 456.71 321.66 0.1742 0.5030

116 F6 279.85 450.80 257.52 0.1432 0.5192 292.35 448.31 274.59 0.1491 0.5146

117 F7 223.50 438.80 209.72 0.1202 0.5312 242.63 445.39 231.45 0.1274 0.5262

118 F8 195.05 415.00 190.33 0.1116 0.5343 223.23 438.11 208.86 0.1203 0.5313

119 F9 763.00 930.40 671.02 0.1824 0.5005 781.09 922.97 712.24 0.1864 0.4956

120 F10 671.47 912.20 602.81 0.1662 0.5079 684.98 907.85 628.39 0.1693 0.5047

Table A.4: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright-side IT8.7/1

– patch index: 81-120).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

121 F11 592.91 893.40 531.76 0.1521 0.5158 622.86 900.07 566.22 0.1575 0.5120

122 F12 534.95 908.50 494.07 0.1368 0.5226 565.07 923.74 510.28 0.1417 0.5212

123 F13 1178.32 1536.00 1548.79 0.1633 0.4789 1200.79 1560.33 1588.86 0.1635 0.4781

124 F14 1185.38 1007.00 1264.54 0.2361 0.4513 1194.98 1006.96 1247.57 0.2385 0.4522

125 F15 1696.57 1896.00 536.35 0.2138 0.5375 1708.62 1903.50 583.49 0.2135 0.5352

126 F16 461.95 510.20 394.57 0.1987 0.4938 483.94 525.73 414.17 0.2014 0.4922

127 F17 936.69 763.20 410.73 0.2752 0.5044 950.98 785.90 449.81 0.2700 0.5020

128 F18 1048.87 1437.00 570.28 0.1725 0.5319 1039.24 1394.73 591.17 0.1752 0.5289

129 F19 694.75 757.00 1243.16 0.1761 0.4318 664.59 724.49 1204.24 0.1755 0.4305

130 F20 51.06 99.19 25.21 0.1265 0.5529 57.06 99.10 32.55 0.1391 0.5434

131 F21 154.58 330.70 58.45 0.1169 0.5626 155.28 316.83 60.11 0.1221 0.5604

132 F22 269.93 522.30 77.40 0.1295 0.5639 252.66 478.50 74.16 0.1321 0.5627

133 G1 80.90 99.24 87.57 0.1766 0.4875 92.68 105.25 104.84 0.1867 0.4770

134 G2 72.62 102.00 93.73 0.1542 0.4873 83.81 108.39 108.96 0.1646 0.4790

135 G3 61.55 98.86 97.24 0.1341 0.4846 73.93 106.21 111.76 0.1477 0.4774

136 G4 45.36 99.00 107.80 0.0979 0.4806 59.85 108.63 123.62 0.1162 0.4746

137 G5 351.40 449.90 382.65 0.1704 0.4909 383.97 475.87 415.95 0.1751 0.4884

138 G6 296.98 453.40 406.54 0.1428 0.4906 317.34 465.07 426.65 0.1481 0.4882

139 G7 238.79 430.10 412.58 0.1205 0.4883 265.97 444.93 441.52 0.1287 0.4845

140 G8 210.96 416.50 415.35 0.1095 0.4865 243.13 449.79 434.12 0.1173 0.4882

141 G9 780.10 948.10 768.12 0.1803 0.4931 799.67 954.41 793.48 0.1828 0.4909

142 G10 693.74 936.00 800.17 0.1620 0.4916 709.41 929.82 840.02 0.1652 0.4872

143 G11 619.27 916.90 816.67 0.1472 0.4905 650.70 944.52 852.65 0.1498 0.4892

144 G12 551.84 921.90 847.84 0.1304 0.4903 586.80 936.04 881.49 0.1359 0.4878

145 G13 1126.68 1500.00 1567.95 0.1591 0.4765 1156.75 1563.62 1606.01 0.1572 0.4782

146 G14 1099.24 882.90 1204.07 0.2449 0.4426 1100.98 889.21 1197.54 0.2442 0.4438

147 G15 1705.58 1899.00 441.87 0.2165 0.5423 1727.77 1930.67 471.30 0.2153 0.5413

148 G16 317.72 347.80 277.54 0.1996 0.4916 341.25 367.02 301.73 0.2022 0.4892

149 G17 803.82 603.50 283.15 0.3003 0.5073 858.41 661.52 325.43 0.2920 0.5064

150 G18 961.86 1357.00 461.88 0.1695 0.5380 978.34 1350.04 482.19 0.1726 0.5358

151 G19 560.46 599.10 1167.94 0.1718 0.4131 542.10 576.68 1138.06 0.1720 0.4117

152 G20 91.73 194.40 74.01 0.1136 0.5417 107.05 199.72 89.56 0.1270 0.5331

153 G21 160.71 281.90 204.10 0.1285 0.5073 174.85 286.56 212.05 0.1369 0.5048

154 G22 43.63 57.57 112.89 0.1401 0.4159 48.60 59.87 115.41 0.1504 0.4168

155 H1 83.92 98.83 104.05 0.1787 0.4735 94.37 105.13 120.30 0.1857 0.4656

156 H2 76.46 99.52 129.49 0.1562 0.4575 89.08 107.10 146.45 0.1669 0.4515

157 H3 70.79 100.60 160.63 0.1373 0.4392 82.69 107.50 173.53 0.1493 0.4366

158 H4 57.29 97.82 216.68 0.1054 0.4048 71.67 105.60 237.61 0.1210 0.4013

159 H5 291.72 354.90 382.37 0.1726 0.4723 321.18 375.05 415.57 0.1786 0.4692

160 H6 265.90 356.40 473.30 0.1513 0.4562 284.66 372.42 489.74 0.1551 0.4566

Table A.5: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright-side IT8.7/1

– patch index: 121-160).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

161 H7 230.30 346.60 574.60 0.1288 0.4361 253.25 360.26 609.16 0.1353 0.4332

162 H8 205.73 337.30 662.90 0.1134 0.4185 235.38 356.66 695.37 0.1227 0.4184

163 H9 824.06 947.40 830.57 0.1881 0.4865 862.10 974.58 877.41 0.1904 0.4842

164 H10 784.93 944.00 940.00 0.1767 0.4782 808.49 964.29 950.66 0.1784 0.4788

165 H11 734.91 919.10 1019.35 0.1672 0.4705 754.51 924.36 1048.25 0.1699 0.4683

166 H12 669.74 934.10 1340.06 0.1432 0.4495 682.44 943.45 1349.61 0.1446 0.4497

167 H13 1069.91 1451.00 1576.80 0.1553 0.4737 1118.34 1534.94 1654.95 0.1537 0.4746

168 H14 1011.17 768.10 1145.72 0.2533 0.4329 1031.46 782.48 1179.18 0.2530 0.4319

169 H15 1713.50 1891.00 340.02 0.2204 0.5473 1774.26 1970.11 360.56 0.2190 0.5471

170 H16 209.19 229.20 181.07 0.1997 0.4923 234.14 248.20 202.91 0.2051 0.4892

171 H17 697.70 483.00 186.80 0.3282 0.5112 740.46 532.62 222.56 0.3152 0.5101

172 H18 860.00 1240.00 339.02 0.1680 0.5450 886.76 1244.10 369.30 0.1717 0.5421

173 H19 445.52 466.30 1086.04 0.1666 0.3923 436.78 447.37 1070.55 0.1687 0.3887

174 H20 48.51 74.83 101.78 0.1314 0.4562 58.40 80.36 114.86 0.1452 0.4497

175 H21 140.05 240.30 315.37 0.1194 0.4611 154.78 243.15 333.56 0.1289 0.4556

176 H22 41.19 20.08 48.10 0.3385 0.3713 43.33 23.55 48.35 0.3200 0.3913

177 I1 132.74 142.70 196.45 0.1855 0.4486 145.45 150.52 211.75 0.1915 0.4458

178 I2 136.91 146.10 294.68 0.1705 0.4093 144.85 150.52 298.23 0.1757 0.4108

179 I3 137.41 145.70 431.45 0.1519 0.3625 143.13 144.51 443.51 0.1572 0.3572

180 I4 134.93 141.40 647.85 0.1285 0.3030 132.45 128.08 654.95 0.1318 0.2869

181 I5 429.58 469.50 487.10 0.1923 0.4730 445.20 483.29 523.63 0.1922 0.4694

182 I6 426.45 462.70 627.40 0.1844 0.4502 452.61 472.03 672.86 0.1895 0.4448

183 I7 416.76 449.10 751.36 0.1772 0.4297 433.31 467.80 774.18 0.1774 0.4308

184 I8 404.57 429.40 1032.99 0.1627 0.3886 405.47 433.30 1038.51 0.1619 0.3892

185 I9 881.06 971.30 882.15 0.1947 0.4830 926.56 990.60 938.21 0.1993 0.4793

186 I10 860.63 949.80 967.58 0.1911 0.4746 907.80 979.38 1010.70 0.1949 0.4731

187 I11 848.50 930.50 1038.99 0.1894 0.4672 906.02 978.68 1101.71 0.1918 0.4663

188 I12 853.30 924.00 1323.37 0.1827 0.4451 884.04 951.10 1347.22 0.1842 0.4460

189 I13 1022.52 1410.00 1553.91 0.1524 0.4729 1083.06 1519.05 1592.33 0.1512 0.4773

190 I14 934.79 673.80 1073.73 0.2622 0.4252 960.37 699.42 1082.76 0.2613 0.4282

191 I15 1671.97 1838.00 263.38 0.2227 0.5508 1750.36 1924.76 269.29 0.2228 0.5512

192 I16 126.32 138.70 111.37 0.1989 0.4913 146.51 154.33 132.14 0.2051 0.4860

193 I17 600.47 381.90 115.99 0.3597 0.5148 655.83 434.16 151.66 0.3441 0.5126

194 I18 786.28 1169.00 262.09 0.1646 0.5506 805.83 1165.98 276.49 0.1685 0.5487

195 I19 353.49 361.50 988.59 0.1617 0.3722 341.54 352.01 948.85 0.1613 0.3741

196 I20 199.38 249.00 472.13 0.1490 0.4188 203.04 244.08 474.10 0.1536 0.4155

197 I21 308.62 433.00 769.73 0.1355 0.4276 315.90 425.24 784.04 0.1397 0.4230

198 I22 22.83 23.38 3.34 0.2381 0.5486 26.92 27.41 7.55 0.2337 0.5355

199 J1 44.84 40.54 75.05 0.2043 0.4155 52.54 46.85 84.15 0.2085 0.4184

200 J2 52.62 39.51 132.74 0.2017 0.3408 55.25 42.54 129.87 0.2041 0.3535

Table A.6: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright-side IT8.7/1

– patch index: 161-200).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

201 J3 59.79 37.27 225.62 0.1846 0.2589 56.18 32.80 217.08 0.1874 0.2461

202 J4 69.08 35.27 365.91 0.1629 0.1872 54.28 19.49 341.07 0.1585 0.1280

203 J5 265.59 267.20 316.28 0.2034 0.4605 291.33 282.80 345.34 0.2092 0.4570

204 J6 292.03 272.70 441.92 0.2046 0.4300 319.86 291.41 472.28 0.2095 0.4294

205 J7 305.00 263.50 562.40 0.2052 0.3989 308.07 267.16 563.68 0.2052 0.4003

206 J8 333.18 253.70 812.46 0.2027 0.3472 326.19 234.90 813.02 0.2075 0.3362

207 J9 759.97 820.60 751.34 0.1984 0.4820 804.34 854.33 790.69 0.2012 0.4808

208 J10 768.36 810.00 828.78 0.1995 0.4732 816.04 851.79 902.29 0.2003 0.4703

209 J11 772.41 787.00 913.88 0.2017 0.4624 815.60 818.59 988.11 0.2032 0.4588

210 J12 818.59 771.50 1229.72 0.2036 0.4318 833.62 782.34 1247.38 0.2044 0.4317

211 J13 1002.69 1406.00 1592.45 0.1493 0.4709 1052.99 1482.59 1631.95 0.1494 0.4734

212 J14 867.42 593.20 1012.07 0.2710 0.4170 912.05 630.23 1047.55 0.2701 0.4199

213 J15 1671.11 1813.00 191.89 0.2270 0.5542 1731.78 1893.32 188.06 0.2257 0.5551

214 J16 66.18 72.04 59.91 0.1996 0.4888 82.77 86.03 74.73 0.2073 0.4847

215 J17 497.63 286.00 61.53 0.4003 0.5177 550.09 338.13 95.39 0.3724 0.5151

216 J18 725.19 1092.00 187.21 0.1642 0.5563 743.39 1087.54 192.53 0.1686 0.5551

217 J19 276.44 272.10 898.80 0.1567 0.3471 265.05 251.48 903.87 0.1571 0.3354

218 J20 37.88 15.55 210.57 0.1678 0.1550 28.97 7.98 191.68 0.1601 0.0992

219 J21 255.08 239.60 544.35 0.1861 0.3934 263.22 237.69 557.16 0.1914 0.3889

220 J22 16.17 26.03 4.46 0.1540 0.5578 20.63 30.06 8.16 0.1664 0.5454

221 K1 73.64 65.53 78.97 0.2277 0.4559 82.25 73.76 90.12 0.2255 0.4550

222 K2 90.37 64.78 109.79 0.2598 0.4190 95.93 71.11 114.70 0.2547 0.4248

223 K3 102.26 59.56 141.44 0.2881 0.3775 105.97 62.86 141.43 0.2877 0.3840

224 K4 122.02 53.94 190.48 0.3248 0.3231 126.41 58.13 179.59 0.3289 0.3404

225 K5 218.69 196.30 230.31 0.2270 0.4584 241.41 214.10 255.12 0.2289 0.4568

226 K6 264.42 196.00 310.93 0.2557 0.4264 280.97 212.31 325.09 0.2531 0.4303

227 K7 296.17 183.40 385.93 0.2817 0.3925 309.65 195.02 392.13 0.2808 0.3979

228 K8 340.63 167.10 512.42 0.3108 0.3430 347.59 174.36 485.53 0.3146 0.3551

229 K9 667.09 674.00 634.29 0.2104 0.4784 728.41 719.45 686.13 0.2146 0.4769

230 K10 700.97 653.10 709.43 0.2221 0.4655 739.83 690.84 760.59 0.2211 0.4645

231 K11 748.80 641.10 816.99 0.2337 0.4502 787.05 671.11 868.82 0.2339 0.4487

232 K12 858.20 620.60 1054.26 0.2575 0.4190 881.03 642.22 1052.65 0.2578 0.4228

233 K13 968.57 1369.00 1580.58 0.1476 0.4695 1022.28 1448.70 1658.80 0.1475 0.4702

234 K14 806.35 529.70 956.03 0.2776 0.4103 831.43 564.50 976.50 0.2720 0.4155

235 K15 1652.55 1761.00 130.42 0.2323 0.5569 1702.16 1818.10 126.47 0.2320 0.5575

236 K16 30.57 33.73 27.86 0.1972 0.4896 42.57 44.27 38.04 0.2075 0.4854

237 K17 411.75 216.40 27.61 0.4403 0.5207 458.80 265.31 53.11 0.3992 0.5193

238 K18 666.77 1006.00 123.98 0.1654 0.5614 683.95 1014.76 119.98 0.1682 0.5615

239 K19 226.41 215.20 832.51 0.1522 0.3254 219.78 205.20 833.96 0.1516 0.3184

240 K20 102.89 58.06 207.69 0.2577 0.3272 101.27 57.67 198.77 0.2592 0.3322

Table A.7: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright-side IT8.7/1

– patch index: 201-240).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

241 K21 411.55 324.90 654.39 0.2271 0.4034 406.68 319.03 649.37 0.2278 0.4021

242 K22 15.72 31.86 48.76 0.0983 0.4481 24.24 38.31 57.47 0.1257 0.4470

243 L1 75.29 68.07 65.25 0.2331 0.4741 86.87 79.15 77.53 0.2306 0.4728

244 L2 93.20 67.66 70.06 0.2828 0.4619 102.06 76.47 79.55 0.2744 0.4626

245 L3 102.08 61.10 71.55 0.3311 0.4459 114.43 71.81 84.61 0.3167 0.4471

246 L4 116.20 53.21 72.67 0.4105 0.4229 131.08 68.03 76.46 0.3797 0.4434

247 L5 223.18 196.80 186.49 0.2390 0.4743 254.42 222.59 217.29 0.2397 0.4719

248 L6 274.74 193.10 202.42 0.2908 0.4599 299.60 214.79 222.51 0.2861 0.4615

249 L7 308.87 176.20 208.09 0.3455 0.4434 333.28 198.60 226.27 0.3340 0.4478

250 L8 344.20 163.30 219.58 0.3988 0.4257 376.84 197.45 225.30 0.3755 0.4427

251 L9 666.78 675.90 556.44 0.2138 0.4876 712.67 716.63 605.43 0.2147 0.4857

252 L10 717.37 662.50 579.61 0.2315 0.4811 772.99 709.17 640.13 0.2319 0.4788

253 L11 754.65 634.20 595.51 0.2504 0.4735 823.16 694.27 656.67 0.2493 0.4731

254 L12 833.94 613.60 623.33 0.2801 0.4638 920.09 685.24 681.89 0.2779 0.4656

255 L13 879.10 1281.00 1530.48 0.1424 0.4670 948.62 1376.78 1614.36 0.1435 0.4686

256 L14 634.14 360.00 768.83 0.3041 0.3885 683.15 396.73 786.15 0.3039 0.3971

257 L15 1580.28 1579.00 41.61 0.2490 0.5597 1647.26 1640.83 9.52 0.2506 0.5618

258 L16 0.91 0.87 0.84 0.2209 0.4751 6.84 6.66 3.79 0.2315 0.5075

259 L17 209.71 92.58 1.15 0.5237 0.5202 240.90 126.38 15.12 0.4416 0.5213

260 L18 540.56 783.50 33.12 0.1745 0.5690 544.67 792.46 0.02 0.1753 0.5737

261 L19 116.62 90.08 580.72 0.1453 0.2526 106.20 74.49 565.06 0.1456 0.2297

262 L20 158.68 85.98 148.30 0.3352 0.4087 169.72 97.57 151.91 0.3250 0.4204

263 L21 416.18 326.20 363.01 0.2602 0.4588 439.78 342.93 381.95 0.2614 0.4586

264 L22 48.63 28.06 2.01 0.4090 0.5310 54.38 34.67 7.22 0.3650 0.5235

265 Dmin 2119.82 2346.00 1816.99 0.1983 0.4938 2179.67 2556.41 1877.51 0.1889 0.4985

266 N1 1660.37 1848.00 1455.37 0.1968 0.4929 1743.47 2010.82 1550.42 0.1908 0.4950

267 N2 1511.22 1690.00 1347.91 0.1956 0.4922 1616.26 1845.68 1383.88 0.1933 0.4965

268 N3 1361.14 1524.00 1217.15 0.1953 0.4921 1428.66 1626.15 1244.10 0.1934 0.4952

269 N4 1168.89 1299.00 1029.69 0.1969 0.4924 1232.35 1371.09 1122.58 0.1959 0.4903

270 N5 988.05 1098.00 885.53 0.1965 0.4913 1090.82 1202.39 942.53 0.1987 0.4929

271 N6 855.00 950.00 769.53 0.1964 0.4910 940.16 1023.24 866.59 0.1991 0.4876

272 N7 705.68 785.60 640.03 0.1959 0.4907 791.58 857.17 721.40 0.2002 0.4878

273 N8 597.38 663.00 532.48 0.1968 0.4915 668.50 729.19 596.34 0.1996 0.4899

274 N9 498.70 556.10 459.63 0.1952 0.4898 552.69 607.39 519.64 0.1970 0.4871

275 N10 413.79 459.60 385.10 0.1956 0.4888 462.07 504.43 433.62 0.1981 0.4866

276 N11 336.89 372.00 317.60 0.1962 0.4874 370.12 404.84 352.77 0.1974 0.4857

277 N12 263.65 291.40 247.04 0.1962 0.4879 301.92 323.45 277.69 0.2017 0.4863

278 N13 216.97 240.40 206.35 0.1954 0.4871 239.73 254.51 235.83 0.2012 0.4807

279 N14 174.66 194.30 161.92 0.1954 0.4892 199.72 215.84 192.45 0.1990 0.4839

280 N15 135.74 150.10 129.26 0.1957 0.4868 159.53 170.08 153.55 0.2012 0.4827

Table A.8: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright-side IT8.7/1

– patch index: 241-280).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

281 N16 101.13 111.10 95.53 0.1969 0.4868 117.16 123.88 115.94 0.2017 0.4799

282 N17 74.20 81.02 69.83 0.1980 0.4864 87.47 92.46 86.23 0.2019 0.4802

283 N18 52.18 56.92 48.01 0.1988 0.4879 62.74 65.75 61.97 0.2032 0.4792

284 N19 35.01 38.32 32.24 0.1982 0.4881 41.46 44.40 40.89 0.1998 0.4814

285 N20 20.50 22.47 19.10 0.1977 0.4875 26.74 28.32 26.51 0.2014 0.4799

286 N21 13.02 14.29 12.67 0.1962 0.4846 17.58 18.72 18.05 0.1995 0.4779

287 N22 5.23 5.71 5.06 0.1971 0.4846 9.03 9.50 9.12 0.2018 0.4779

288 Dmax 0.83 0.80 0.79 0.2176 0.4732 3.67 3.78 3.31 0.2086 0.4840

289 A1 0.92 0.88 0.57 0.2325 0.5003 1.68 1.64 1.21 0.2236 0.4939

290 A2 0.97 0.72 0.39 0.2998 0.5008 1.86 1.58 1.11 0.2579 0.4923

291 A3 1.20 0.77 0.38 0.3456 0.4989 2.09 1.62 1.03 0.2845 0.4945

292 A4 1.37 0.66 0.32 0.4481 0.4857 2.36 1.56 0.85 0.3323 0.4961

293 A5 3.62 3.48 2.23 0.2316 0.5010 5.14 4.91 3.41 0.2311 0.4964

294 A6 4.13 3.31 1.96 0.2769 0.4993 5.78 4.81 3.03 0.2659 0.4975

295 A7 4.48 2.98 1.63 0.3314 0.4960 6.37 4.68 2.74 0.3009 0.4967

296 A8 5.19 2.83 1.34 0.4019 0.4930 7.42 4.75 2.45 0.3448 0.4971

297 A9 10.58 11.65 7.83 0.2027 0.5021 13.71 14.68 9.97 0.2079 0.5008

298 A10 11.27 11.67 7.68 0.2153 0.5017 14.03 14.42 9.40 0.2171 0.5020

299 A11 11.80 11.50 7.38 0.2286 0.5014 14.41 14.07 8.87 0.2287 0.5024

300 A12 12.48 10.81 6.34 0.2578 0.5024 15.88 13.95 8.35 0.2538 0.5019

301 A13 27.62 33.27 24.14 0.1844 0.4998 32.10 38.21 26.37 0.1876 0.5025

302 A14 30.43 35.29 24.74 0.1920 0.5010 34.79 39.95 26.02 0.1954 0.5049

303 A15 31.86 37.45 24.29 0.1912 0.5057 35.08 40.98 25.85 0.1929 0.5071

304 A16 32.12 38.27 25.74 0.1880 0.5040 33.54 39.80 25.11 0.1901 0.5074

305 A17 31.28 36.36 24.81 0.1922 0.5026 35.74 40.51 26.43 0.1978 0.5045

306 A18 30.43 36.41 23.30 0.1883 0.5069 34.64 40.87 25.43 0.1913 0.5081

307 A19 30.60 35.67 25.99 0.1902 0.4988 32.90 38.25 26.86 0.1915 0.5009

308 A20 1.95 0.99 0.66 0.4153 0.4744 3.28 2.17 1.49 0.3250 0.4848

309 A21 8.96 7.07 5.08 0.2752 0.4885 11.58 9.30 6.64 0.2708 0.4895

310 A22 19.60 20.59 11.51 0.2160 0.5105 22.64 23.34 13.08 0.2198 0.5099

311 B1 1.20 1.18 0.62 0.2312 0.5116 1.99 2.00 1.24 0.2233 0.5039

312 B2 1.41 1.19 0.41 0.2753 0.5227 2.31 2.08 1.00 0.2533 0.5128

313 B3 1.61 1.21 0.30 0.3117 0.5271 2.60 2.10 0.87 0.2833 0.5148

314 B4 1.92 1.16 0.12 0.3902 0.5305 2.91 2.06 0.52 0.3302 0.5239

315 B5 4.86 4.88 2.50 0.2272 0.5133 6.50 6.54 3.53 0.2257 0.5109

316 B6 5.11 4.48 1.54 0.2657 0.5241 7.08 6.24 2.59 0.2612 0.5179

317 B7 5.49 4.13 0.94 0.3126 0.5290 7.70 6.04 1.89 0.2962 0.5229

318 B8 6.52 3.96 0.46 0.3875 0.5296 8.82 5.94 1.29 0.3465 0.5252

319 B9 12.46 14.01 9.13 0.1994 0.5044 15.64 17.43 10.72 0.2022 0.5073

320 B10 13.35 14.44 8.40 0.2093 0.5093 16.26 17.37 9.88 0.2122 0.5102

Table A.9: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright-side IT8.7/1

– patch index: 281-288 and dark-side – patch index: 289-320).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

321 B11 13.22 13.72 7.33 0.2194 0.5123 16.68 17.28 9.01 0.2203 0.5134

322 B12 14.17 13.37 5.35 0.2456 0.5214 18.21 17.30 7.04 0.2437 0.5210

323 B13 27.26 33.52 24.99 0.1802 0.4986 28.82 34.98 25.42 0.1830 0.4999

324 B14 27.51 30.31 23.70 0.1989 0.4931 29.94 32.45 24.22 0.2032 0.4955

325 B15 30.06 35.56 19.33 0.1935 0.5150 32.55 38.27 20.35 0.1950 0.5159

326 B16 24.34 28.76 19.78 0.1890 0.5025 27.17 31.56 21.53 0.1923 0.5026

327 B17 27.69 30.96 20.05 0.2006 0.5046 30.12 33.06 20.89 0.2046 0.5054

328 B18 27.18 33.70 20.50 0.1830 0.5105 29.48 35.45 21.81 0.1881 0.5091

329 B19 25.33 29.55 24.09 0.1873 0.4917 27.33 31.35 25.20 0.1907 0.4922

330 B20 1.71 1.12 0.40 0.3470 0.5114 2.81 2.22 1.11 0.2849 0.5066

331 B21 5.51 4.13 1.40 0.3076 0.5187 7.33 5.73 2.33 0.2925 0.5144

332 B22 11.46 11.15 5.76 0.2339 0.5120 13.91 13.40 7.04 0.2359 0.5109

333 C1 2.33 2.58 1.22 0.2085 0.5196 3.36 3.54 2.03 0.2148 0.5093

334 C2 2.45 2.53 0.78 0.2293 0.5328 3.54 3.58 1.46 0.2298 0.5229

335 C3 2.68 2.59 0.45 0.2500 0.5436 3.76 3.67 0.97 0.2438 0.5350

336 C4 2.85 2.56 0.12 0.2740 0.5537 4.00 3.67 0.46 0.2651 0.5464

337 C5 9.02 9.86 4.20 0.2128 0.5235 11.36 12.17 5.59 0.2157 0.5199

338 C6 9.28 9.54 2.39 0.2327 0.5381 11.94 12.20 3.29 0.2332 0.5361

339 C7 9.56 9.18 1.13 0.2538 0.5484 12.19 11.68 1.97 0.2522 0.5438

340 C8 10.70 9.20 0.27 0.2863 0.5538 13.01 11.25 0.66 0.2832 0.5511

341 C9 14.64 16.77 10.00 0.1977 0.5096 17.89 20.04 12.31 0.2013 0.5075

342 C10 14.74 16.57 8.50 0.2042 0.5164 17.76 19.84 10.06 0.2055 0.5168

343 C11 14.63 16.17 6.92 0.2105 0.5236 18.11 19.55 8.27 0.2155 0.5234

344 C12 15.94 16.18 3.08 0.2380 0.5436 19.48 19.46 4.31 0.2402 0.5400

345 C13 22.28 28.26 22.41 0.1736 0.4954 25.91 32.58 23.98 0.1767 0.4999

346 C14 22.87 23.96 21.22 0.2051 0.4836 26.81 27.87 23.38 0.2082 0.4871

347 C15 28.68 34.55 15.29 0.1935 0.5245 32.45 38.06 16.77 0.1986 0.5240

348 C16 18.04 21.24 14.68 0.1896 0.5022 20.60 23.98 16.07 0.1923 0.5037

349 C17 22.36 23.66 14.76 0.2122 0.5051 25.95 27.01 16.41 0.2161 0.5061

350 C18 23.42 30.35 16.03 0.1778 0.5185 26.57 34.12 17.49 0.1799 0.5197

351 C19 19.95 23.22 22.04 0.1837 0.4811 22.00 25.38 23.19 0.1863 0.4837

352 C20 4.21 3.53 0.39 0.2887 0.5447 5.74 4.99 1.11 0.2734 0.5352

353 C21 7.55 7.99 3.71 0.2180 0.5191 9.68 10.07 4.83 0.2210 0.5172

354 C22 9.20 8.87 3.66 0.2402 0.5210 11.11 10.67 4.49 0.2407 0.5201

355 D1 1.58 1.83 0.84 0.2003 0.5220 2.36 2.63 1.48 0.2041 0.5116

356 D2 1.49 1.68 0.44 0.2128 0.5398 2.38 2.62 1.06 0.2118 0.5258

357 D3 1.55 1.80 0.33 0.2099 0.5484 2.41 2.76 0.78 0.2092 0.5383

358 D4 1.58 1.88 0.16 0.2089 0.5592 2.43 2.81 0.39 0.2123 0.5529

359 D5 6.67 7.84 3.43 0.1983 0.5244 8.42 9.87 4.31 0.1987 0.5244

360 D6 6.42 7.70 1.72 0.2021 0.5453 8.28 9.63 2.49 0.2067 0.5411

Table A.10: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (dark-side IT8.7/1 –

patch index: 321-360).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

361 D7 6.34 7.63 0.78 0.2060 0.5577 8.07 9.57 1.23 0.2079 0.5545

362 D8 6.31 7.78 0.26 0.2039 0.5656 7.97 9.70 0.34 0.2063 0.5651

363 D9 16.37 19.53 8.54 0.1955 0.5248 19.78 22.95 9.89 0.2009 0.5246

364 D10 16.83 20.24 4.76 0.2011 0.5442 19.59 23.29 5.62 0.2031 0.5433

365 D11 15.96 19.53 2.26 0.2022 0.5568 19.04 23.15 2.72 0.2034 0.5564

366 D12 16.82 21.18 0.87 0.1996 0.5654 19.83 24.07 0.75 0.2070 0.5654

367 D13 20.82 26.96 22.25 0.1693 0.4932 23.76 30.98 23.81 0.1698 0.4980

368 D14 21.44 21.26 20.56 0.2133 0.4759 23.75 23.17 21.82 0.2175 0.4775

369 D15 28.07 33.71 12.00 0.1971 0.5325 31.21 36.45 13.32 0.2021 0.5309

370 D16 12.86 15.04 10.19 0.1912 0.5031 15.32 17.91 11.52 0.1924 0.5060

371 D17 19.12 19.01 11.06 0.2266 0.5070 21.45 20.98 12.07 0.2304 0.5071

372 D18 20.69 27.87 12.38 0.1739 0.5271 23.35 30.49 13.22 0.1795 0.5274

373 D19 15.93 18.31 20.26 0.1814 0.4690 18.00 20.51 21.91 0.1840 0.4716

374 D20 1.12 1.25 0.43 0.2117 0.5317 1.89 2.04 0.97 0.2140 0.5187

375 D21 11.04 11.91 0.49 0.2310 0.5607 13.24 14.16 0.61 0.2329 0.5602

376 D22 15.41 18.53 19.83 0.1747 0.4726 16.80 20.01 20.70 0.1773 0.4751

377 E1 2.08 2.57 1.15 0.1887 0.5247 2.97 3.52 1.86 0.1935 0.5163

378 E2 1.89 2.51 0.72 0.1813 0.5417 2.79 3.51 1.32 0.1880 0.5318

379 E3 1.91 2.76 0.51 0.1704 0.5540 2.74 3.70 0.94 0.1792 0.5455

380 E4 1.70 2.78 0.18 0.1548 0.5694 2.49 3.86 0.32 0.1621 0.5663

381 E5 9.54 12.13 5.37 0.1838 0.5259 11.71 14.59 6.28 0.1879 0.5265

382 E6 8.73 12.36 3.25 0.1713 0.5456 10.92 14.64 3.97 0.1802 0.5435

383 E7 8.26 12.42 1.85 0.1651 0.5586 9.88 14.31 2.08 0.1712 0.5581

384 E8 8.02 13.02 0.98 0.1555 0.5681 9.64 15.16 0.92 0.1607 0.5690

385 E9 16.54 20.34 11.32 0.1861 0.5148 19.18 22.82 13.06 0.1914 0.5126

386 E10 15.48 19.93 8.70 0.1818 0.5267 18.12 22.95 9.84 0.1850 0.5271

387 E11 14.47 19.49 6.73 0.1770 0.5364 17.66 23.46 7.58 0.1800 0.5382

388 E12 14.19 20.28 4.57 0.1709 0.5496 17.23 24.10 5.30 0.1746 0.5496

389 E13 21.33 28.22 24.28 0.1649 0.4908 22.24 29.29 22.99 0.1677 0.4969

390 E14 18.73 17.68 19.01 0.2197 0.4667 21.63 20.42 20.19 0.2227 0.4731

391 E15 27.24 33.07 9.64 0.1973 0.5390 31.20 36.17 10.72 0.2060 0.5373

392 E16 9.31 10.69 7.49 0.1938 0.5008 11.09 12.63 8.49 0.1963 0.5029

393 E17 15.76 14.67 7.84 0.2431 0.5091 18.24 16.86 9.32 0.2440 0.5073

394 E18 19.11 26.15 10.09 0.1731 0.5329 20.74 28.22 10.84 0.1741 0.5329

395 E19 12.94 14.59 18.96 0.1793 0.4549 14.20 15.77 20.44 0.1821 0.4547

396 E20 2.69 3.55 0.51 0.1872 0.5559 3.80 4.78 0.99 0.1937 0.5483

397 E21 9.06 12.12 2.00 0.1841 0.5541 11.28 14.52 2.62 0.1905 0.5515

398 E22 3.91 7.63 4.46 0.1187 0.5213 5.03 9.22 5.27 0.1263 0.5214

399 F1 1.31 1.74 1.02 0.1720 0.5139 2.06 2.57 1.67 0.1809 0.5071

400 F2 1.15 1.76 0.91 0.1519 0.5231 1.93 2.71 1.50 0.1638 0.5180

Table A.11: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (dark-side IT8.7/1 –

patch index: 361-400).



A.3. Physical Measurements in High-Dynamic-Range Characterisation 195

Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

401 F3 1.02 1.83 0.79 0.1323 0.5340 1.78 2.78 1.39 0.1490 0.5252

402 F4 0.78 1.75 0.57 0.1086 0.5480 1.58 2.84 1.14 0.1328 0.5372

403 F5 4.35 5.95 3.51 0.1671 0.5143 5.84 7.58 4.69 0.1748 0.5106

404 F6 3.44 5.70 2.74 0.1416 0.5280 5.10 7.84 3.91 0.1517 0.5249

405 F7 2.93 5.77 2.26 0.1218 0.5395 4.41 7.91 3.27 0.1327 0.5358

406 F8 2.72 5.71 2.05 0.1151 0.5437 4.08 7.68 3.03 0.1272 0.5384

407 F9 10.34 13.19 8.37 0.1773 0.5088 12.34 15.37 9.81 0.1813 0.5079

408 F10 9.76 13.84 7.80 0.1622 0.5174 11.49 15.60 8.98 0.1688 0.5154

409 F11 8.81 13.67 6.98 0.1501 0.5240 10.71 15.97 8.31 0.1556 0.5223

410 F12 8.16 14.06 6.30 0.1372 0.5318 10.13 16.80 7.48 0.1424 0.5313

411 F13 18.81 25.35 22.29 0.1615 0.4897 20.28 26.90 23.38 0.1642 0.4902

412 F14 16.76 14.74 17.73 0.2303 0.4558 18.92 16.66 19.24 0.2318 0.4591

413 F15 26.10 31.53 7.61 0.2000 0.5437 29.31 34.87 8.81 0.2026 0.5422

414 F16 6.33 7.29 5.21 0.1928 0.4997 8.07 8.96 6.58 0.1991 0.4971

415 F17 12.86 11.13 5.52 0.2620 0.5101 15.21 13.29 6.58 0.2596 0.5105

416 F18 16.44 23.32 7.64 0.1690 0.5393 18.32 25.49 8.01 0.1725 0.5402

417 F19 9.85 10.84 16.83 0.1767 0.4376 11.41 12.53 18.14 0.1798 0.4444

418 F20 0.73 1.34 0.29 0.1346 0.5558 1.38 2.14 0.73 0.1550 0.5399

419 F21 2.18 4.54 0.59 0.1210 0.5671 3.20 6.13 0.95 0.1304 0.5630

420 F22 4.34 8.29 0.88 0.1322 0.5681 5.04 9.33 0.98 0.1362 0.5676

421 G1 0.86 1.12 0.83 0.1707 0.5002 1.53 1.81 1.41 0.1861 0.4946

422 G2 0.83 1.20 0.90 0.1542 0.5016 1.46 1.88 1.52 0.1708 0.4943

423 G3 0.72 1.17 0.98 0.1358 0.4965 1.38 1.93 1.62 0.1573 0.4936

424 G4 0.51 1.10 1.03 0.1015 0.4925 1.24 2.01 1.76 0.1352 0.4935

425 G5 4.33 5.71 4.39 0.1679 0.4982 5.72 7.34 5.53 0.1729 0.4989

426 G6 3.62 5.62 4.52 0.1427 0.4984 5.04 7.38 5.85 0.1512 0.4983

427 G7 3.10 5.53 4.82 0.1234 0.4952 4.53 7.52 6.22 0.1332 0.4977

428 G8 2.78 5.37 4.79 0.1138 0.4947 4.13 7.28 6.21 0.1252 0.4966

429 G9 10.59 13.37 9.68 0.1764 0.5010 12.25 15.21 11.07 0.1791 0.5003

430 G10 9.98 13.79 10.39 0.1610 0.5004 11.33 15.46 11.16 0.1638 0.5028

431 G11 8.92 13.44 10.59 0.1473 0.4992 10.63 15.62 11.88 0.1516 0.5010

432 G12 8.27 13.93 10.90 0.1324 0.5016 10.01 16.37 12.49 0.1366 0.5028

433 G13 16.49 22.82 20.81 0.1566 0.4876 18.84 25.72 21.90 0.1602 0.4921

434 G14 14.73 12.17 16.40 0.2390 0.4444 16.53 13.87 17.67 0.2382 0.4497

435 G15 26.57 31.78 6.05 0.2038 0.5485 28.15 33.22 6.14 0.2066 0.5487

436 G16 3.95 4.47 3.20 0.1960 0.4991 5.34 5.89 4.40 0.1999 0.4959

437 G17 10.49 8.27 3.55 0.2890 0.5126 12.75 10.13 4.65 0.2855 0.5103

438 G18 14.88 21.92 5.84 0.1648 0.5462 16.67 23.74 6.24 0.1704 0.5458

439 G19 7.53 7.94 15.09 0.1752 0.4157 8.52 9.19 16.14 0.1750 0.4246

440 G20 1.23 2.52 0.74 0.1193 0.5498 2.07 3.61 1.33 0.1372 0.5396

Table A.12: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (dark-side IT8.7/1 –

patch index: 401-440).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

441 G21 2.15 3.72 2.36 0.1322 0.5148 3.06 4.83 3.24 0.1436 0.5101

442 G22 0.49 0.63 1.25 0.1432 0.4142 1.09 1.29 1.88 0.1675 0.4450

443 H1 0.95 1.16 1.07 0.1763 0.4842 1.53 1.77 1.60 0.1858 0.4845

444 H2 0.80 1.06 1.26 0.1562 0.4658 1.45 1.76 1.95 0.1719 0.4704

445 H3 0.80 1.14 1.69 0.1393 0.4467 1.44 1.83 2.34 0.1610 0.4586

446 H4 0.60 0.98 2.07 0.1116 0.4100 1.35 1.82 3.26 0.1406 0.4260

447 H5 3.49 4.36 4.31 0.1706 0.4796 4.61 5.51 5.41 0.1781 0.4792

448 H6 3.09 4.18 5.12 0.1523 0.4636 4.26 5.59 6.63 0.1579 0.4658

449 H7 2.73 4.01 6.32 0.1334 0.4410 3.89 5.38 8.33 0.1418 0.4420

450 H8 2.40 3.75 7.05 0.1203 0.4229 3.69 5.47 9.18 0.1302 0.4347

451 H9 10.60 12.70 10.02 0.1834 0.4945 12.54 14.74 11.59 0.1868 0.4943

452 H10 10.39 12.86 11.71 0.1743 0.4854 12.12 14.66 12.96 0.1789 0.4871

453 H11 9.65 12.41 12.53 0.1654 0.4786 11.66 14.82 14.19 0.1686 0.4823

454 H12 9.16 12.79 16.77 0.1458 0.4580 10.84 15.11 18.38 0.1482 0.4647

455 H13 15.78 22.09 20.94 0.1540 0.4850 17.39 24.03 21.66 0.1570 0.4884

456 H14 13.50 10.49 15.46 0.2486 0.4346 15.38 12.09 16.35 0.2504 0.4427

457 H15 24.98 29.71 4.34 0.2066 0.5529 26.87 31.37 4.63 0.2102 0.5522

458 H16 2.44 2.76 1.96 0.1963 0.4996 3.64 4.03 2.83 0.2008 0.4997

459 H17 8.81 6.34 2.16 0.3192 0.5169 10.33 7.83 3.11 0.3012 0.5140

460 H18 12.83 19.42 4.09 0.1622 0.5524 14.41 21.19 4.35 0.1669 0.5523

461 H19 5.58 5.82 13.02 0.1692 0.3970 6.63 6.88 14.44 0.1731 0.4042

462 H20 0.54 0.82 0.99 0.1366 0.4668 1.19 1.54 1.76 0.1610 0.4683

463 H21 1.76 2.88 3.58 0.1264 0.4654 2.58 3.90 4.74 0.1370 0.4661

464 H22 0.48 0.24 0.58 0.3299 0.3711 0.92 0.72 0.93 0.2541 0.4470

465 I1 1.43 1.56 2.08 0.1841 0.4519 2.02 2.17 2.57 0.1910 0.4620

466 I2 1.46 1.57 3.06 0.1708 0.4133 2.09 2.22 3.88 0.1778 0.4249

467 I3 1.53 1.60 4.57 0.1560 0.3670 2.10 2.19 5.48 0.1635 0.3834

468 I4 1.47 1.41 6.77 0.1370 0.2956 2.04 1.97 8.38 0.1435 0.3128

469 I5 4.84 5.40 5.28 0.1904 0.4780 6.05 6.68 6.52 0.1924 0.4778

470 I6 4.80 5.30 6.81 0.1833 0.4555 5.90 6.52 8.10 0.1844 0.4585

471 I7 4.65 5.08 8.09 0.1769 0.4349 5.85 6.35 9.69 0.1796 0.4391

472 I8 4.83 5.04 11.97 0.1661 0.3899 5.60 5.89 13.64 0.1660 0.3929

473 I9 10.60 12.21 10.14 0.1891 0.4902 12.55 14.11 11.82 0.1934 0.4891

474 I10 10.59 11.92 11.64 0.1888 0.4783 12.35 13.91 12.96 0.1900 0.4817

475 I11 10.69 12.08 12.72 0.1859 0.4726 12.49 13.89 14.32 0.1894 0.4739

476 I12 10.45 11.57 16.11 0.1799 0.4482 12.51 13.84 17.94 0.1828 0.4547

477 I13 14.50 20.37 19.80 0.1529 0.4831 16.21 22.74 21.19 0.1541 0.4863

478 I14 11.45 8.42 13.49 0.2570 0.4252 13.30 10.06 14.67 0.2555 0.4349

479 I15 24.20 28.51 3.07 0.2100 0.5565 25.57 30.02 3.20 0.2107 0.5565

480 I16 1.38 1.58 1.09 0.1947 0.5016 2.29 2.52 1.76 0.2017 0.5000

Table A.13: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (dark-side IT8.7/1 –

patch index: 441-480).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

481 I17 7.20 4.69 1.28 0.3539 0.5186 8.81 6.13 1.96 0.3303 0.5174

482 I18 11.59 17.77 3.01 0.1614 0.5569 12.71 19.10 3.01 0.1649 0.5577

483 I19 4.26 4.20 11.51 0.1674 0.3714 5.11 4.97 13.38 0.1705 0.3733

484 I20 2.41 2.94 5.43 0.1535 0.4213 3.14 3.68 6.62 0.1604 0.4234

485 I21 3.66 4.90 8.49 0.1426 0.4297 4.62 6.19 9.78 0.1455 0.4394

486 I22 0.27 0.26 0.07 0.2466 0.5342 0.68 0.76 0.37 0.2077 0.5182

487 J1 0.47 0.44 0.70 0.2050 0.4318 0.87 0.85 1.13 0.2064 0.4493

488 J2 0.47 0.34 1.24 0.2024 0.3294 0.92 0.82 1.71 0.2011 0.4016

489 J3 0.60 0.34 2.30 0.1905 0.2429 0.94 0.66 2.80 0.1948 0.3085

490 J4 0.72 0.30 3.83 0.1724 0.1616 1.01 0.57 4.66 0.1721 0.2185

491 J5 2.88 2.96 3.22 0.2023 0.4679 3.76 3.86 4.11 0.2032 0.4694

492 J6 3.22 3.03 4.72 0.2050 0.4340 3.98 3.85 5.69 0.2020 0.4396

493 J7 3.27 2.87 6.05 0.2029 0.4007 4.08 3.62 7.01 0.2053 0.4104

494 J8 3.59 2.68 9.14 0.2017 0.3387 4.26 3.28 10.34 0.2015 0.3495

495 J9 8.76 9.76 8.28 0.1947 0.4880 10.15 11.42 9.08 0.1946 0.4925

496 J10 8.89 9.68 9.43 0.1950 0.4777 10.42 11.15 10.60 0.1990 0.4791

497 J11 8.89 9.37 10.66 0.1960 0.4648 10.76 11.18 11.88 0.2010 0.4700

498 J12 9.51 9.10 14.43 0.2010 0.4326 11.11 10.65 15.64 0.2040 0.4401

499 J13 13.78 19.75 19.70 0.1493 0.4815 14.93 21.31 20.16 0.1512 0.4855

500 J14 10.62 7.33 12.79 0.2673 0.4151 11.88 8.56 13.44 0.2632 0.4265

501 J15 23.87 27.76 2.16 0.2137 0.5592 24.77 28.40 2.09 0.2168 0.5592

502 J16 0.71 0.79 0.49 0.2024 0.5068 1.37 1.50 0.99 0.2038 0.5028

503 J17 5.99 3.47 0.67 0.3990 0.5201 6.92 4.49 1.20 0.3560 0.5189

504 J18 10.32 16.03 2.02 0.1607 0.5617 11.36 17.18 1.89 0.1654 0.5628

505 J19 3.28 3.07 10.27 0.1637 0.3448 3.79 3.70 11.23 0.1633 0.3581

506 J20 0.48 0.19 2.33 0.1860 0.1657 0.72 0.46 2.79 0.1818 0.2581

507 J21 2.91 2.69 6.17 0.1884 0.3919 3.52 3.35 6.84 0.1895 0.4058

508 J22 0.16 0.26 0.08 0.1488 0.5442 0.60 0.76 0.34 0.1823 0.5253

509 K1 0.70 0.63 0.67 0.2303 0.4663 1.18 1.13 1.16 0.2183 0.4710

510 K2 0.84 0.58 1.02 0.2667 0.4143 1.32 1.07 1.44 0.2423 0.4442

511 K3 0.99 0.57 1.34 0.2920 0.3783 1.44 1.02 1.79 0.2606 0.4146

512 K4 1.28 0.56 2.08 0.3216 0.3166 1.66 0.93 2.38 0.2924 0.3675

513 K5 2.24 2.05 2.32 0.2243 0.4618 3.00 2.80 3.01 0.2215 0.4666

514 K6 2.51 1.89 3.08 0.2504 0.4242 3.44 2.70 4.02 0.2457 0.4340

515 K7 2.97 1.84 4.16 0.2760 0.3847 3.72 2.52 4.77 0.2670 0.4061

516 K8 3.61 1.71 6.00 0.3055 0.3256 4.24 2.30 6.31 0.2941 0.3591

517 K9 7.26 7.59 6.87 0.2049 0.4820 8.66 8.86 8.02 0.2093 0.4814

518 K10 7.64 7.35 7.96 0.2156 0.4666 9.00 8.62 8.83 0.2186 0.4707

519 K11 8.31 7.34 9.15 0.2279 0.4529 9.76 8.67 10.17 0.2294 0.4581

520 K12 9.61 7.02 12.34 0.2530 0.4158 10.99 8.21 12.91 0.2542 0.4275

Table A.14: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (dark-side IT8.7/1 –

patch index: 481-520).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

521 K13 12.91 18.78 19.09 0.1468 0.4803 13.92 20.02 19.52 0.1493 0.4834

522 K14 9.91 6.47 11.91 0.2778 0.4081 10.63 7.36 12.04 0.2706 0.4215

523 K15 22.82 26.08 1.38 0.2183 0.5613 23.42 26.71 1.10 0.2192 0.5625

524 K16 0.32 0.35 0.25 0.2025 0.4984 0.83 0.93 0.61 0.2006 0.5040

525 K17 4.58 2.41 0.28 0.4407 0.5218 5.40 3.32 0.74 0.3757 0.5204

526 K18 9.22 14.40 1.24 0.1611 0.5661 10.01 15.14 1.07 0.1667 0.5670

527 K19 2.59 2.32 9.23 0.1592 0.3208 2.94 2.69 10.03 0.1604 0.3300

528 K20 1.02 0.52 2.20 0.2646 0.3035 1.45 0.96 2.63 0.2428 0.3645

529 K21 4.49 3.58 7.17 0.2253 0.4043 5.05 4.11 7.76 0.2241 0.4112

530 K22 0.18 0.30 0.34 0.1263 0.4737 0.60 0.79 0.80 0.1611 0.4792

531 L1 0.68 0.64 0.52 0.2297 0.4865 1.15 1.11 0.96 0.2221 0.4827

532 L2 0.78 0.57 0.56 0.2834 0.4659 1.25 1.04 0.88 0.2569 0.4799

533 L3 0.92 0.56 0.65 0.3265 0.4472 1.42 1.06 1.01 0.2791 0.4683

534 L4 1.17 0.54 0.74 0.4073 0.4230 1.69 1.07 1.06 0.3241 0.4600

535 L5 2.17 1.98 1.77 0.2335 0.4793 2.93 2.75 2.35 0.2287 0.4831

536 L6 2.52 1.79 1.83 0.2892 0.4621 3.42 2.65 2.51 0.2697 0.4704

537 L7 2.91 1.64 2.08 0.3449 0.4373 3.76 2.45 2.60 0.3111 0.4564

538 L8 3.60 1.65 2.28 0.4092 0.4220 4.48 2.50 2.75 0.3564 0.4482

539 L9 6.95 7.32 5.67 0.2078 0.4925 8.31 8.64 6.73 0.2104 0.4918

540 L10 7.61 7.34 6.18 0.2234 0.4848 8.69 8.34 6.80 0.2255 0.4868

541 L11 8.28 7.20 6.52 0.2438 0.4770 9.45 8.37 7.38 0.2406 0.4794

542 L12 9.04 6.80 6.72 0.2756 0.4665 10.63 8.24 7.63 0.2706 0.4721

543 L13 11.65 17.04 18.02 0.1450 0.4773 12.53 18.45 17.93 0.1461 0.4840

544 L14 7.19 4.01 9.39 0.3011 0.3779 8.07 4.87 9.43 0.2953 0.4005

545 L15 20.90 22.90 0.48 0.2285 0.5634 19.97 22.02 0.15 0.2278 0.5651

546 L16 0.03 0.03 0.06 0.1818 0.4091 0.46 0.50 0.28 0.2070 0.5116

547 L17 2.43 1.08 0.10 0.5135 0.5135 3.20 1.88 0.39 0.3940 0.5194

548 L18 7.48 11.41 0.39 0.1664 0.5711 7.74 11.64 0.04 0.1697 0.5741

549 L19 1.28 0.88 5.97 0.1581 0.2445 1.51 1.12 6.82 0.1562 0.2597

550 L20 1.61 0.84 1.58 0.3398 0.3989 2.05 1.30 1.92 0.3000 0.4290

551 L21 4.25 3.41 3.85 0.2539 0.4584 4.99 4.16 4.30 0.2488 0.4661

552 L22 0.47 0.30 0.07 0.3629 0.5212 0.85 0.70 0.31 0.2770 0.5126

553 Dmin 24.81 29.18 19.83 0.1901 0.5031 24.08 27.95 18.41 0.1932 0.5046

554 N1 18.28 21.54 14.98 0.1893 0.5018 17.89 21.03 14.57 0.1898 0.5020

555 N2 16.03 18.71 13.30 0.1905 0.5003 16.28 18.73 12.92 0.1937 0.5017

556 N3 13.73 15.97 11.30 0.1912 0.5005 14.68 16.93 11.73 0.1933 0.5015

557 N4 11.64 13.44 9.70 0.1921 0.4992 12.90 14.60 10.34 0.1963 0.4998

558 N5 9.80 11.37 8.17 0.1913 0.4995 11.28 12.98 9.20 0.1931 0.5001

559 N6 8.31 9.62 6.97 0.1916 0.4989 9.77 11.16 8.03 0.1942 0.4990

560 N7 6.91 7.95 5.89 0.1923 0.4974 8.10 9.11 6.79 0.1961 0.4966

Table A.15: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (dark-side IT8.7/1 –

patch index: 521-560).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

561 N8 5.97 6.87 4.92 0.1929 0.4995 6.74 7.70 5.41 0.1947 0.5004

562 N9 4.77 5.47 4.10 0.1924 0.4967 5.84 6.61 4.84 0.1955 0.4977

563 N10 3.90 4.50 3.30 0.1917 0.4983 4.80 5.48 3.93 0.1944 0.4992

564 N11 3.25 3.69 2.79 0.1945 0.4958 4.02 4.58 3.48 0.1934 0.4956

565 N12 2.54 2.87 2.15 0.1955 0.4962 3.45 3.84 2.84 0.1982 0.4969

566 N13 1.97 2.26 1.69 0.1923 0.4968 2.82 3.11 2.42 0.1985 0.4933

567 N14 1.57 1.78 1.29 0.1959 0.4985 2.34 2.58 1.89 0.2006 0.4970

568 N15 1.18 1.34 1.03 0.1938 0.4949 1.83 2.01 1.52 0.2006 0.4948

569 N16 0.86 0.98 0.72 0.1944 0.4978 1.41 1.57 1.14 0.1997 0.4977

570 N17 0.70 0.77 0.57 0.1987 0.4974 1.17 1.27 0.95 0.2025 0.4953

571 N18 0.47 0.54 0.37 0.1968 0.5019 0.91 1.00 0.73 0.2019 0.4971

572 N19 0.35 0.38 0.30 0.2020 0.4921 0.70 0.76 0.55 0.2036 0.4972

573 N20 0.16 0.17 0.16 0.2042 0.4804 0.53 0.58 0.41 0.2032 0.4981

574 N21 0.14 0.14 0.14 0.2122 0.4759 0.44 0.48 0.33 0.2018 0.5005

575 N22 0.08 0.08 0.08 0.2045 0.4669 0.36 0.40 0.27 0.2004 0.5018

576 Dmax 0.07 0.07 0.06 0.2330 0.4823 0.34 0.39 0.25 0.1985 0.5048

Table A.16: Radiometric measurements of training colour samples (transparency) by a spectroradiome-

ter (Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (dark-side IT8.7/1 –

patch index: 561-576).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

1 A1 64.45 55.63 47.93 0.2472 0.4802 64.56 55.33 46.44 0.2498 0.4817

2 A2 73.73 52.57 40.87 0.2994 0.4804 74.46 53.47 38.16 0.3005 0.4856

3 A3 85.64 53.81 36.74 0.3415 0.4828 87.71 55.39 35.26 0.3425 0.4867

4 A4 99.44 52.51 26.30 0.4117 0.4892 100.15 53.07 25.62 0.4117 0.4909

5 A5 250.70 220.99 169.04 0.2462 0.4884 247.17 214.87 164.48 0.2494 0.4879

6 A6 277.98 208.55 140.75 0.2904 0.4903 279.18 207.17 140.30 0.2933 0.4897

7 A7 310.72 203.00 125.38 0.3330 0.4896 312.73 202.51 122.79 0.3364 0.4901

8 A8 351.33 200.71 103.13 0.3828 0.4920 357.82 205.16 102.65 0.3824 0.4933

9 A9 641.06 656.62 503.18 0.2137 0.4925 641.74 644.70 483.92 0.2182 0.4932

10 A10 673.75 643.83 475.69 0.2292 0.4928 663.54 627.43 467.15 0.2313 0.4920

11 A11 703.12 633.17 452.24 0.2433 0.4931 700.72 630.73 437.50 0.2443 0.4947

12 A12 768.91 617.86 414.98 0.2726 0.4929 764.57 622.33 396.32 0.2709 0.4962

13 A13 1491.29 1722.17 1389.58 0.1894 0.4922 1450.57 1708.46 1376.12 0.1859 0.4927

14 A14 1597.99 1789.56 1391.51 0.1960 0.4938 1595.55 1779.78 1392.89 0.1966 0.4933

15 A15 1650.75 1882.77 1303.23 0.1953 0.5013 1635.09 1844.62 1285.57 0.1972 0.5006

16 A16 1612.23 1841.61 1383.86 0.1932 0.4964 1596.38 1833.54 1372.49 0.1922 0.4968

17 A17 1614.16 1791.49 1373.76 0.1980 0.4945 1611.72 1808.42 1367.50 0.1963 0.4956

18 A18 1593.73 1818.15 1268.34 0.1951 0.5009 1571.93 1820.89 1281.89 0.1921 0.5007

19 A19 1513.41 1681.36 1380.48 0.1961 0.4901 1521.87 1699.51 1431.34 0.1944 0.4885

20 A20 142.02 80.14 56.27 0.3755 0.4767 150.14 88.56 67.73 0.3571 0.4739

21 A21 532.42 395.41 304.34 0.2887 0.4824 537.15 398.55 305.95 0.2890 0.4826

22 A22 1057.45 1026.46 637.76 0.2303 0.5030 1052.75 1023.53 637.46 0.2299 0.5029

23 B1 92.63 83.44 58.82 0.2436 0.4938 93.77 82.30 57.66 0.2499 0.4934

24 B2 109.14 85.04 45.46 0.2870 0.5031 108.67 84.30 43.72 0.2890 0.5043

25 B3 125.23 88.88 32.24 0.3221 0.5144 125.55 87.57 31.91 0.3272 0.5135

26 B4 143.55 85.94 12.01 0.3910 0.5266 147.46 88.44 10.61 0.3917 0.5286

27 B5 336.95 310.18 186.22 0.2429 0.5031 336.84 302.85 189.79 0.2473 0.5002

28 B6 369.92 297.69 139.15 0.2817 0.5101 372.95 297.06 133.52 0.2853 0.5112

29 B7 405.91 287.28 94.55 0.3248 0.5172 396.94 281.21 94.33 0.3242 0.5167

30 B8 443.81 273.00 58.24 0.3766 0.5213 442.69 271.69 58.13 0.3774 0.5211

31 B9 801.36 827.33 610.67 0.2131 0.4950 789.42 814.48 596.23 0.2134 0.4954

32 B10 821.34 807.71 563.16 0.2246 0.4970 809.14 806.04 538.40 0.2230 0.4998

33 B11 832.30 798.40 483.22 0.2335 0.5040 840.19 797.17 482.04 0.2359 0.5037

34 B12 922.64 814.23 384.85 0.2582 0.5128 908.40 796.44 383.98 0.2594 0.5117

35 B13 1438.76 1708.99 1424.08 0.1836 0.4907 1393.93 1645.57 1424.89 0.1837 0.4879

36 B14 1488.13 1564.12 1379.06 0.2046 0.4840 1484.32 1553.39 1339.74 0.2061 0.4854

37 B15 1622.99 1847.58 1129.96 0.1984 0.5081 1651.08 1875.89 1147.48 0.1987 0.5080

38 B16 1375.77 1564.33 1129.28 0.1949 0.4987 1342.37 1507.30 1184.33 0.1952 0.4932

39 B17 1521.93 1603.60 1170.99 0.2093 0.4961 1543.22 1623.78 1188.96 0.2095 0.4959

40 B18 1446.67 1704.55 1171.70 0.1895 0.5025 1445.42 1720.68 1193.83 0.1875 0.5022

Table A.17: Nikon D100 and D40 measurements by HDR characterisation (bright-side IT8.7/1 – patch

index: 1-40).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

41 B19 1355.17 1490.14 1394.39 0.1944 0.4809 1372.71 1535.13 1396.46 0.1921 0.4833

42 B20 127.70 87.73 43.79 0.3243 0.5013 138.90 98.73 56.17 0.3107 0.4969

43 B21 378.76 268.46 116.37 0.3186 0.5082 375.63 270.13 120.27 0.3138 0.5077

44 B22 711.46 628.58 375.97 0.2526 0.5021 695.11 618.67 363.14 0.2513 0.5032

45 C1 181.52 177.90 113.90 0.2275 0.5016 178.73 171.23 108.88 0.2326 0.5014

46 C2 193.52 179.55 77.31 0.2482 0.5182 192.75 178.47 77.09 0.2486 0.5180

47 C3 202.50 178.60 50.57 0.2670 0.5299 205.65 179.45 50.46 0.2698 0.5297

48 C4 217.14 178.29 13.48 0.2962 0.5473 218.23 178.35 12.92 0.2977 0.5474

49 C5 633.62 641.75 343.56 0.2245 0.5116 628.07 615.72 324.53 0.2318 0.5113

50 C6 650.36 616.67 193.95 0.2482 0.5295 646.06 606.95 199.22 0.2497 0.5279

51 C7 665.84 595.31 107.05 0.2686 0.5403 657.40 581.07 106.90 0.2713 0.5395

52 C8 712.84 570.05 20.20 0.3058 0.5502 718.34 569.25 21.07 0.3083 0.5497

53 C9 955.23 1010.51 705.22 0.2096 0.4989 943.14 997.75 678.90 0.2102 0.5004

54 C10 956.10 989.64 601.60 0.2172 0.5059 972.10 997.71 581.49 0.2199 0.5078

55 C11 982.86 998.91 495.92 0.2252 0.5151 962.20 979.55 482.41 0.2250 0.5155

56 C12 1054.71 984.38 258.85 0.2542 0.5338 1053.27 989.45 256.28 0.2528 0.5344

57 C13 1331.58 1625.14 1464.23 0.1769 0.4859 1338.10 1646.10 1429.13 0.1765 0.4887

58 C14 1458.22 1454.81 1395.13 0.2124 0.4767 1422.73 1435.07 1375.03 0.2102 0.4771

59 C15 1667.24 1881.97 953.55 0.2036 0.5171 1658.88 1894.14 965.75 0.2013 0.5171

60 C16 1097.48 1205.21 952.56 0.1992 0.4923 1089.92 1206.86 947.02 0.1979 0.4930

61 C17 1370.89 1369.44 949.27 0.2215 0.4978 1367.68 1361.18 943.38 0.2222 0.4977

62 C18 1334.08 1624.72 975.70 0.1864 0.5107 1344.69 1671.21 1010.42 0.1827 0.5108

63 C19 1175.30 1284.41 1408.06 0.1906 0.4687 1164.46 1302.99 1399.67 0.1870 0.4708

64 C20 305.47 239.05 56.94 0.3008 0.5296 316.74 249.43 70.30 0.2968 0.5258

65 C21 520.66 498.47 281.39 0.2355 0.5074 519.81 493.80 276.14 0.2375 0.5076

66 C22 606.52 531.15 262.45 0.2592 0.5107 609.86 530.69 261.23 0.2608 0.5106

67 D1 125.54 128.57 88.56 0.2165 0.4988 129.99 129.88 86.16 0.2225 0.5002

68 D2 126.91 132.07 59.99 0.2219 0.5195 127.92 130.41 59.17 0.2262 0.5190

69 D3 128.83 135.28 37.65 0.2269 0.5361 129.15 132.80 38.57 0.2310 0.5343

70 D4 125.05 135.61 10.19 0.2284 0.5574 124.35 130.99 11.64 0.2342 0.5550

71 D5 502.46 535.64 296.58 0.2132 0.5114 493.97 529.17 289.29 0.2125 0.5121

72 D6 482.71 531.10 157.86 0.2164 0.5357 483.43 519.46 163.42 0.2206 0.5334

73 D7 452.85 499.80 81.38 0.2211 0.5490 452.70 491.96 77.42 0.2245 0.5490

74 D8 434.45 494.25 1.70 0.2213 0.5664 431.12 480.96 9.33 0.2247 0.5641

75 D9 1103.50 1223.29 617.57 0.2072 0.5167 1097.43 1201.37 612.25 0.2095 0.5160

76 D10 1083.96 1215.29 362.17 0.2125 0.5362 1089.69 1192.01 354.82 0.2176 0.5355

77 D11 1049.79 1192.57 175.96 0.2157 0.5514 1057.79 1193.75 159.82 0.2176 0.5526

78 D12 1022.02 1171.17 49.05 0.2182 0.5626 1044.25 1186.30 52.84 0.2199 0.5620

79 D13 1302.09 1631.68 1498.19 0.1721 0.4851 1305.03 1672.15 1476.66 0.1694 0.4883

80 D14 1378.06 1316.65 1341.30 0.2192 0.4711 1331.03 1276.62 1334.99 0.2174 0.4692

Table A.18: Nikon D100 and D40 measurements by HDR characterisation (bright-side IT8.7/1 – patch

index: 41-80).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

81 D15 1698.16 1924.84 793.36 0.2061 0.5257 1696.67 1935.82 794.89 0.2049 0.5261

82 D16 868.25 935.97 746.37 0.2025 0.4913 854.49 928.62 707.97 0.2022 0.4943

83 D17 1230.54 1138.41 738.19 0.2399 0.4993 1206.77 1124.27 717.60 0.2387 0.5003

84 D18 1232.41 1570.07 815.64 0.1810 0.5189 1246.35 1590.58 821.46 0.1808 0.5192

85 D19 984.65 1079.72 1312.52 0.1865 0.4602 985.24 1079.17 1337.70 0.1860 0.4584

86 D20 94.67 94.55 52.78 0.2266 0.5092 103.72 104.00 63.55 0.2237 0.5048

87 D21 715.97 700.14 45.62 0.2522 0.5549 723.20 701.98 52.04 0.2536 0.5538

88 D22 901.26 1026.50 1242.67 0.1800 0.4613 894.38 1029.84 1245.25 0.1782 0.4616

89 E1 176.94 196.86 122.03 0.2025 0.5068 170.68 189.97 118.67 0.2022 0.5064

90 E2 160.56 190.67 85.52 0.1960 0.5236 162.63 189.07 85.57 0.1998 0.5227

91 E3 148.92 195.00 55.05 0.1839 0.5418 151.26 195.86 54.94 0.1859 0.5417

92 E4 127.91 198.82 8.75 0.1631 0.5705 128.32 196.89 9.86 0.1650 0.5696

93 E5 713.15 838.01 440.42 0.1953 0.5164 701.34 825.90 431.91 0.1950 0.5167

94 E6 628.71 814.04 277.05 0.1840 0.5359 626.59 796.86 281.83 0.1867 0.5342

95 E7 559.05 784.70 145.97 0.1751 0.5531 553.90 768.66 148.70 0.1768 0.5521

96 E8 500.18 776.42 61.37 0.1623 0.5667 497.91 762.16 64.37 0.1643 0.5658

97 E9 1131.11 1304.06 831.35 0.1951 0.5062 1088.94 1256.78 814.84 0.1946 0.5053

98 E10 1037.17 1260.13 631.25 0.1900 0.5195 1030.34 1238.36 631.25 0.1917 0.5184

99 E11 980.99 1260.23 506.36 0.1833 0.5299 979.11 1224.89 503.83 0.1877 0.5284

100 E12 934.10 1244.48 346.51 0.1810 0.5426 932.74 1240.48 349.54 0.1812 0.5423

101 E13 1242.19 1584.24 1557.55 0.1674 0.4804 1247.56 1610.86 1513.83 0.1666 0.4840

102 E14 1293.97 1153.13 1320.94 0.2295 0.4602 1270.94 1148.06 1304.91 0.2269 0.4611

103 E15 1720.06 1920.00 679.84 0.2113 0.5307 1669.74 1927.96 669.49 0.2049 0.5323

104 E16 660.58 704.03 560.66 0.2048 0.4911 665.45 717.83 575.20 0.2023 0.4910

105 E17 1074.25 934.38 593.35 0.2547 0.4985 1095.86 958.58 569.84 0.2551 0.5020

106 E18 1142.74 1483.74 692.35 0.1794 0.5242 1151.31 1503.55 678.90 0.1789 0.5257

107 E19 814.18 898.14 1264.35 0.1801 0.4471 830.31 916.31 1245.74 0.1814 0.4503

108 E20 197.87 235.88 56.55 0.2026 0.5435 205.56 245.32 69.93 0.2008 0.5391

109 E21 606.06 743.18 169.67 0.1977 0.5454 606.51 745.53 170.40 0.1972 0.5455

110 E22 261.10 466.43 345.39 0.1259 0.5062 266.62 475.38 354.71 0.1260 0.5056

111 F1 123.76 146.39 116.83 0.1854 0.4934 123.78 142.94 114.00 0.1897 0.4929

112 F2 108.56 147.87 102.30 0.1649 0.5053 108.89 144.87 102.01 0.1683 0.5038

113 F3 94.82 148.34 94.26 0.1457 0.5130 95.83 145.95 96.01 0.1490 0.5105

114 F4 78.72 150.55 79.47 0.1223 0.5261 74.65 143.58 75.57 0.1216 0.5263

115 F5 360.28 454.74 326.61 0.1766 0.5015 363.04 447.40 323.74 0.1805 0.5005

116 F6 296.24 446.90 275.46 0.1514 0.5139 300.64 443.81 277.39 0.1544 0.5127

117 F7 244.92 439.00 221.13 0.1307 0.5273 246.92 432.91 224.96 0.1332 0.5254

118 F8 219.55 416.35 207.23 0.1239 0.5288 219.96 411.41 211.33 0.1252 0.5271

119 F9 769.99 917.80 687.64 0.1855 0.4976 771.87 905.49 679.34 0.1883 0.4972

120 F10 691.34 910.46 619.78 0.1706 0.5056 679.08 904.54 606.34 0.1691 0.5067

Table A.19: Nikon D100 and D40 measurements by HDR characterisation (bright-side IT8.7/1 – patch

index: 81-120).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

121 F11 630.03 902.02 554.44 0.1593 0.5130 621.12 895.89 561.42 0.1578 0.5121

122 F12 562.29 919.85 522.53 0.1412 0.5198 554.68 901.40 507.39 0.1422 0.5201

123 F13 1191.33 1584.50 1570.24 0.1606 0.4806 1198.22 1581.90 1546.42 0.1621 0.4815

124 F14 1181.74 1005.55 1235.21 0.2367 0.4532 1169.50 1006.17 1238.37 0.2342 0.4533

125 F15 1724.61 1916.26 563.79 0.2145 0.5363 1733.50 1962.38 547.97 0.2113 0.5382

126 F16 493.22 520.40 420.37 0.2064 0.4899 486.48 513.85 414.45 0.2062 0.4900

127 F17 958.23 780.76 444.66 0.2737 0.5018 962.32 779.26 455.31 0.2746 0.5003

128 F18 1055.33 1409.35 557.39 0.1769 0.5314 1045.77 1415.35 546.47 0.1749 0.5326

129 F19 674.62 715.22 1181.44 0.1805 0.4306 688.41 740.17 1202.57 0.1788 0.4326

130 F20 61.28 101.63 36.00 0.1447 0.5400 68.09 109.36 47.01 0.1473 0.5322

131 F21 159.85 314.39 59.04 0.1265 0.5600 160.72 311.15 67.05 0.1278 0.5568

132 F22 257.66 476.25 69.32 0.1354 0.5633 259.26 474.89 78.97 0.1361 0.5609

133 G1 91.29 102.71 103.39 0.1880 0.4760 92.55 102.81 100.25 0.1913 0.4781

134 G2 84.52 106.11 112.86 0.1678 0.4740 84.07 105.21 107.21 0.1695 0.4773

135 G3 74.13 103.93 113.09 0.1503 0.4742 73.25 99.53 112.46 0.1539 0.4706

136 G4 62.56 107.19 129.27 0.1216 0.4687 61.03 104.56 124.12 0.1220 0.4701

137 G5 367.45 449.66 411.62 0.1761 0.4848 372.28 451.17 399.97 0.1786 0.4869

138 G6 314.26 453.89 433.05 0.1493 0.4851 309.58 439.81 422.26 0.1515 0.4843

139 G7 266.37 432.79 450.07 0.1314 0.4804 262.25 426.19 435.61 0.1318 0.4818

140 G8 241.12 421.14 448.82 0.1220 0.4795 238.79 418.98 445.19 0.1215 0.4798

141 G9 800.02 951.12 802.89 0.1831 0.4898 791.91 938.80 782.65 0.1839 0.4906

142 G10 710.77 936.45 822.96 0.1650 0.4893 706.55 928.31 802.00 0.1659 0.4904

143 G11 648.84 957.12 840.21 0.1481 0.4915 641.10 906.74 876.21 0.1520 0.4837

144 G12 592.25 950.35 902.32 0.1350 0.4872 584.51 944.91 885.08 0.1343 0.4884

145 G13 1139.53 1524.24 1574.36 0.1587 0.4775 1155.44 1559.48 1623.56 0.1571 0.4771

146 G14 1101.21 890.94 1196.57 0.2440 0.4441 1113.85 902.65 1187.67 0.2446 0.4460

147 G15 1727.24 1962.65 457.84 0.2123 0.5428 1756.00 1954.49 462.33 0.2164 0.5419

148 G16 353.84 361.61 313.50 0.2107 0.4844 357.66 369.92 308.41 0.2094 0.4873

149 G17 858.65 642.11 329.65 0.2992 0.5034 848.21 641.51 313.55 0.2973 0.5059

150 G18 961.61 1329.44 461.72 0.1726 0.5368 972.71 1345.77 459.71 0.1726 0.5374

151 G19 545.91 573.36 1131.57 0.1741 0.4115 553.36 575.92 1141.36 0.1754 0.4108

152 G20 106.49 195.45 85.95 0.1292 0.5337 113.00 198.60 98.85 0.1334 0.5275

153 G21 175.74 274.23 222.56 0.1418 0.4979 179.77 276.61 224.05 0.1438 0.4978

154 G22 52.10 59.91 123.11 0.1579 0.4084 54.86 65.25 118.22 0.1581 0.4230

155 H1 95.49 104.01 119.60 0.1896 0.4647 94.96 101.90 118.24 0.1920 0.4636

156 H2 88.47 103.15 149.38 0.1698 0.4455 87.92 103.32 140.97 0.1707 0.4513

157 H3 83.67 105.93 180.01 0.1513 0.4309 83.89 105.82 175.81 0.1526 0.4332

158 H4 72.49 103.92 236.33 0.1239 0.3996 72.35 101.91 235.38 0.1254 0.3975

159 H5 309.84 357.56 406.14 0.1798 0.4669 314.52 356.66 411.99 0.1823 0.4652

160 H6 284.33 358.37 495.47 0.1591 0.4513 284.71 351.70 487.72 0.1621 0.4507

Table A.20: Nikon D100 and D40 measurements by HDR characterisation (bright-side IT8.7/1 – patch

index: 121-160).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

161 H7 248.18 347.06 600.27 0.1368 0.4305 249.27 346.31 590.88 0.1382 0.4319

162 H8 228.78 336.15 697.46 0.1243 0.4109 228.98 339.03 682.22 0.1244 0.4145

163 H9 847.41 969.55 874.31 0.1882 0.4844 858.03 965.30 859.17 0.1916 0.4849

164 H10 798.08 957.03 938.45 0.1777 0.4793 806.38 943.34 957.59 0.1809 0.4762

165 H11 759.55 929.67 1065.44 0.1697 0.4674 756.34 932.69 1043.03 0.1692 0.4696

166 H12 697.54 961.31 1393.58 0.1446 0.4483 696.28 941.98 1404.33 0.1463 0.4453

167 H13 1111.71 1544.22 1586.52 0.1532 0.4787 1115.74 1542.96 1610.30 0.1534 0.4774

168 H14 1032.79 784.68 1167.79 0.2533 0.4331 1011.65 770.71 1141.76 0.2530 0.4336

169 H15 1697.34 1897.54 348.44 0.2176 0.5473 1719.40 1943.86 358.67 0.2152 0.5475

170 H16 232.30 241.99 206.72 0.2073 0.4859 246.88 254.34 208.12 0.2107 0.4885

171 H17 744.27 522.62 228.69 0.3212 0.5074 741.69 522.14 222.85 0.3210 0.5084

172 H18 883.23 1244.74 359.20 0.1712 0.5430 880.15 1253.95 351.95 0.1697 0.5440

173 H19 427.97 440.86 1032.52 0.1688 0.3914 432.84 443.50 1031.55 0.1701 0.3921

174 H20 59.59 79.04 115.71 0.1497 0.4467 67.29 87.39 126.45 0.1532 0.4475

175 H21 157.04 237.98 334.28 0.1328 0.4529 157.24 233.97 329.63 0.1351 0.4523

176 H22 46.03 27.41 51.25 0.3014 0.4038 48.76 30.97 55.02 0.2876 0.4109

177 I1 146.74 148.32 219.79 0.1937 0.4404 142.35 143.57 205.95 0.1954 0.4435

178 I2 142.99 145.85 307.75 0.1758 0.4034 148.91 147.79 308.43 0.1810 0.4042

179 I3 142.96 144.44 440.02 0.1575 0.3582 141.94 142.89 438.86 0.1576 0.3570

180 I4 128.92 133.36 633.31 0.1280 0.2979 132.15 132.15 635.89 0.1314 0.2957

181 I5 443.78 467.87 511.40 0.1973 0.4681 440.22 458.46 488.44 0.2005 0.4698

182 I6 435.66 465.49 652.55 0.1859 0.4468 432.15 457.52 625.08 0.1885 0.4490

183 I7 419.89 451.71 750.75 0.1778 0.4303 425.90 442.21 761.61 0.1823 0.4259

184 I8 399.45 415.45 1038.26 0.1639 0.3837 400.80 419.25 1003.74 0.1653 0.3890

185 I9 912.64 1003.36 906.18 0.1954 0.4834 913.58 982.27 913.58 0.1987 0.4808

186 I10 873.89 953.96 1007.85 0.1920 0.4716 882.16 949.76 1016.32 0.1941 0.4702

187 I11 884.32 962.66 1085.88 0.1904 0.4663 881.09 954.36 1099.55 0.1906 0.4644

188 I12 856.93 924.50 1353.25 0.1825 0.4430 883.13 945.92 1348.13 0.1848 0.4453

189 I13 1051.36 1452.72 1595.24 0.1522 0.4732 1080.08 1492.08 1614.70 0.1526 0.4744

190 I14 949.36 697.65 1065.02 0.2599 0.4298 958.84 708.59 1067.43 0.2593 0.4312

191 I15 1720.42 1889.67 255.19 0.2232 0.5516 1723.27 1902.46 287.75 0.2215 0.5501

192 I16 149.04 153.53 131.13 0.2095 0.4856 160.06 163.73 137.32 0.2114 0.4867

193 I17 648.77 421.70 153.75 0.3490 0.5104 642.73 421.81 155.05 0.3458 0.5106

194 I18 803.05 1178.38 272.63 0.1665 0.5496 803.84 1171.44 267.03 0.1677 0.5498

195 I19 340.72 339.48 975.88 0.1630 0.3654 349.26 345.07 970.93 0.1656 0.3680

196 I20 204.75 243.55 466.77 0.1558 0.4169 213.55 247.78 477.26 0.1593 0.4159

197 I21 308.61 412.26 752.86 0.1411 0.4240 307.27 405.02 747.80 0.1425 0.4226

198 I22 29.25 29.47 11.34 0.2315 0.5249 33.07 33.30 18.31 0.2252 0.5101

199 J1 53.42 47.20 86.50 0.2093 0.4161 51.53 44.65 82.80 0.2126 0.4144

200 J2 56.78 43.33 135.95 0.2038 0.3499 58.20 43.39 137.84 0.2074 0.3479

Table A.21: Nikon D100 and D40 measurements by HDR characterisation (bright-side IT8.7/1 – patch

index: 161-200).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

201 J3 57.20 35.36 216.31 0.1850 0.2574 56.96 36.43 215.34 0.1824 0.2624

202 J4 54.01 24.82 332.72 0.1517 0.1568 56.14 29.76 328.60 0.1509 0.1800

203 J5 278.90 273.00 341.73 0.2066 0.4551 285.38 273.67 346.99 0.2102 0.4535

204 J6 305.99 280.40 458.91 0.2078 0.4285 315.55 283.04 472.52 0.2111 0.4261

205 J7 305.23 259.49 575.10 0.2061 0.3943 312.26 261.29 574.06 0.2098 0.3950

206 J8 319.41 242.12 785.55 0.2025 0.3455 324.96 242.85 789.21 0.2052 0.3450

207 J9 772.13 831.70 781.97 0.1981 0.4800 777.60 825.75 772.37 0.2009 0.4801

208 J10 803.73 824.66 855.95 0.2042 0.4715 806.50 830.93 870.42 0.2031 0.4709

209 J11 801.57 808.54 966.18 0.2026 0.4597 813.14 813.31 975.27 0.2041 0.4592

210 J12 825.88 776.83 1209.96 0.2051 0.4340 828.95 781.62 1252.01 0.2033 0.4313

211 J13 1050.15 1483.34 1667.68 0.1484 0.4717 1057.47 1473.60 1659.99 0.1503 0.4713

212 J14 890.93 620.93 1007.72 0.2694 0.4225 889.05 614.61 1018.96 0.2701 0.4202

213 J15 1689.91 1839.88 182.01 0.2266 0.5550 1710.91 1851.75 193.99 0.2276 0.5542

214 J16 85.26 85.68 76.37 0.2132 0.4821 93.93 94.68 80.79 0.2139 0.4851

215 J17 547.17 331.45 95.59 0.3770 0.5138 537.51 327.07 93.92 0.3755 0.5141

216 J18 732.51 1086.41 182.27 0.1667 0.5563 737.23 1082.03 184.49 0.1683 0.5558

217 J19 258.55 255.64 833.58 0.1568 0.3489 270.89 261.72 869.06 0.1593 0.3462

218 J20 29.48 12.72 189.86 0.1493 0.1449 34.04 18.78 190.31 0.1535 0.1906

219 J21 253.13 232.42 546.20 0.1883 0.3890 255.52 232.22 538.42 0.1909 0.3904

220 J22 23.16 31.73 11.95 0.1731 0.5338 26.40 34.58 18.67 0.1757 0.5177

221 K1 84.81 74.04 94.34 0.2295 0.4507 84.00 71.43 91.99 0.2347 0.4491

222 K2 98.20 70.11 119.47 0.2604 0.4183 98.05 70.10 114.29 0.2628 0.4227

223 K3 107.36 65.30 142.97 0.2833 0.3877 111.05 67.53 142.99 0.2860 0.3913

224 K4 122.23 59.74 176.54 0.3158 0.3473 122.58 59.22 178.81 0.3169 0.3445

225 K5 235.36 207.13 250.20 0.2300 0.4555 240.84 207.46 254.75 0.2340 0.4535

226 K6 271.80 200.73 327.16 0.2550 0.4237 278.27 206.18 317.09 0.2575 0.4293

227 K7 298.55 189.58 386.57 0.2776 0.3966 305.18 194.72 385.51 0.2785 0.3999

228 K8 339.24 174.30 487.73 0.3072 0.3552 336.91 174.52 493.90 0.3038 0.3540

229 K9 693.12 685.71 675.95 0.2132 0.4745 695.92 688.61 668.17 0.2136 0.4756

230 K10 720.74 662.29 757.29 0.2230 0.4611 730.82 661.57 744.47 0.2268 0.4620

231 K11 783.10 663.58 853.42 0.2356 0.4491 774.27 661.24 834.04 0.2347 0.4510

232 K12 873.56 635.82 1051.55 0.2576 0.4218 865.29 629.73 1075.13 0.2557 0.4187

233 K13 1013.33 1428.03 1633.79 0.1483 0.4702 1024.23 1437.25 1650.95 0.1488 0.4698

234 K14 837.48 562.42 947.73 0.2765 0.4177 850.48 574.15 970.70 0.2749 0.4176

235 K15 1691.13 1809.26 109.56 0.2320 0.5584 1705.08 1817.25 120.68 0.2326 0.5577

236 K16 46.08 46.34 40.75 0.2135 0.4830 52.39 52.87 44.31 0.2142 0.4863

237 K17 444.17 252.90 54.65 0.4036 0.5171 443.07 252.87 55.82 0.4025 0.5168

238 K18 677.53 1011.69 110.39 0.1675 0.5626 673.07 997.50 112.63 0.1685 0.5620

239 K19 208.60 197.04 808.31 0.1493 0.3173 220.13 205.27 799.61 0.1545 0.3242

240 K20 101.57 60.19 196.92 0.2547 0.3396 105.43 64.11 203.91 0.2512 0.3437

Table A.22: Nikon D100 and D40 measurements by HDR characterisation (bright-side IT8.7/1 – patch

index: 201-240).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

241 K21 397.92 313.75 626.45 0.2279 0.4043 407.33 315.61 640.92 0.2306 0.4021

242 K22 26.39 38.46 59.42 0.1350 0.4429 28.51 40.69 65.57 0.1365 0.4383

243 L1 92.12 83.81 84.97 0.2297 0.4702 83.92 73.07 74.17 0.2394 0.4689

244 L2 105.80 79.81 86.31 0.2709 0.4599 100.80 72.82 80.85 0.2809 0.4565

245 L3 118.05 75.97 89.27 0.3096 0.4482 112.05 69.99 80.97 0.3191 0.4484

246 L4 132.96 71.45 82.93 0.3659 0.4424 125.95 65.45 77.16 0.3762 0.4399

247 L5 248.78 215.71 218.65 0.2403 0.4689 246.33 209.64 208.76 0.2453 0.4697

248 L6 298.48 211.91 226.01 0.2873 0.4590 293.48 207.08 220.62 0.2890 0.4589

249 L7 329.08 196.99 226.73 0.3320 0.4472 313.28 187.11 218.10 0.3320 0.4462

250 L8 367.14 191.98 219.31 0.3761 0.4425 364.38 191.91 222.17 0.3728 0.4418

251 L9 702.22 710.63 609.03 0.2130 0.4849 700.24 696.94 583.10 0.2171 0.4861

252 L10 747.56 684.67 614.98 0.2325 0.4791 743.97 679.10 614.01 0.2330 0.4785

253 L11 794.03 671.57 638.28 0.2485 0.4728 800.25 668.10 639.68 0.2512 0.4719

254 L12 872.47 649.98 657.65 0.2771 0.4645 887.07 654.72 666.73 0.2792 0.4637

255 L13 913.07 1334.38 1598.43 0.1420 0.4669 931.02 1354.07 1620.16 0.1427 0.4669

256 L14 653.15 385.35 750.19 0.3009 0.3994 660.93 393.15 759.78 0.2991 0.4004

257 L15 1584.03 1598.42 -2.98 0.2480 0.5630 1614.00 1604.47 11.56 0.2511 0.5615

258 L16 12.89 13.06 8.80 0.2193 0.4997 16.32 16.47 10.83 0.2206 0.5011

259 L17 236.37 122.76 17.69 0.4437 0.5185 245.20 128.75 19.21 0.4390 0.5187

260 L18 525.75 766.61 -1.85 0.1750 0.5740 533.83 772.69 5.26 0.1759 0.5728

261 L19 103.32 82.82 546.26 0.1385 0.2498 111.11 88.75 548.21 0.1440 0.2587

262 L20 168.23 96.80 154.51 0.3229 0.4181 167.70 98.39 153.76 0.3187 0.4207

263 L21 428.17 329.87 385.52 0.2622 0.4545 421.04 328.24 371.12 0.2608 0.4574

264 L22 56.15 36.87 11.45 0.3490 0.5156 58.54 38.78 15.24 0.3413 0.5088

265 Dmin 2126.75 2411.78 1915.30 0.1931 0.4928 2120.00 2438.94 1904.74 0.1909 0.4942

266 N1 1655.90 1942.30 1527.69 0.1872 0.4942 1718.26 1957.42 1568.09 0.1921 0.4923

267 N2 1567.32 1799.14 1405.20 0.1913 0.4941 1548.59 1775.02 1387.93 0.1916 0.4940

268 N3 1408.41 1599.83 1264.04 0.1929 0.4931 1405.73 1583.77 1268.70 0.1941 0.4921

269 N4 1226.09 1390.55 1092.23 0.1934 0.4935 1223.92 1338.37 1131.58 0.1983 0.4878

270 N5 1043.54 1173.03 941.47 0.1945 0.4919 1043.75 1154.80 961.54 0.1965 0.4891

271 N6 904.22 998.35 837.52 0.1967 0.4885 906.56 991.02 827.04 0.1987 0.4886

272 N7 755.87 833.96 701.14 0.1967 0.4884 754.80 809.90 704.97 0.2010 0.4854

273 N8 633.78 689.96 593.87 0.1986 0.4865 649.66 698.06 582.28 0.2020 0.4883

274 N9 532.52 580.66 507.47 0.1979 0.4855 543.79 581.67 516.40 0.2011 0.4839

275 N10 446.83 481.71 416.37 0.2003 0.4859 450.43 472.77 417.10 0.2049 0.4839

276 N11 358.84 382.23 347.06 0.2012 0.4822 369.07 386.86 346.17 0.2047 0.4829

277 N12 291.86 310.17 277.97 0.2020 0.4831 294.02 308.54 288.73 0.2032 0.4797

278 N13 238.56 254.74 232.11 0.2006 0.4821 245.92 256.56 232.86 0.2052 0.4818

279 N14 193.90 206.70 186.05 0.2013 0.4829 198.04 205.06 190.97 0.2059 0.4798

280 N15 155.89 161.32 155.07 0.2051 0.4775 159.38 165.68 152.33 0.2055 0.4808

Table A.23: Nikon D100 and D40 measurements by HDR characterisation (bright-side IT8.7/1 – patch

index: 241-280).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

281 N16 114.60 120.65 110.55 0.2032 0.4813 118.95 122.39 113.45 0.2073 0.4799

282 N17 87.98 89.47 87.04 0.2081 0.4761 94.09 94.21 90.00 0.2118 0.4771

283 N18 63.81 65.00 63.24 0.2078 0.4762 67.31 67.53 64.66 0.2113 0.4770

284 N19 44.79 45.16 44.77 0.2091 0.4745 46.51 46.26 45.43 0.2122 0.4749

285 N20 27.23 27.89 28.17 0.2055 0.4735 29.88 30.02 31.11 0.2084 0.4711

286 N21 19.11 19.54 18.84 0.2074 0.4769 21.90 22.24 22.18 0.2076 0.4743

287 N22 11.40 11.76 11.21 0.2059 0.4780 13.69 13.81 14.29 0.2076 0.4713

288 Dmax 6.58 6.95 6.18 0.2034 0.4835 9.35 9.85 10.06 0.1999 0.4733

289 A1 2.72 2.66 2.13 0.2217 0.4886 2.33 2.18 1.72 0.2322 0.4881

290 A2 3.00 2.65 2.05 0.2450 0.4877 2.50 2.11 1.63 0.2562 0.4864

291 A3 3.33 2.78 2.13 0.2592 0.4864 2.82 2.18 1.60 0.2790 0.4867

292 A4 3.92 2.98 2.04 0.2868 0.4898 3.32 2.34 1.53 0.3092 0.4896

293 A5 6.38 6.08 4.32 0.2307 0.4950 5.72 5.23 3.75 0.2400 0.4933

294 A6 7.04 5.98 4.16 0.2581 0.4927 6.43 5.24 3.35 0.2705 0.4960

295 A7 7.80 5.99 3.88 0.2856 0.4932 7.30 5.26 3.21 0.3050 0.4938

296 A8 9.13 6.21 3.60 0.3228 0.4944 8.31 5.36 2.90 0.3411 0.4952

297 A9 14.62 15.40 10.44 0.2111 0.5005 13.67 14.37 9.46 0.2122 0.5021

298 A10 15.05 15.09 10.25 0.2212 0.4990 14.22 14.11 9.48 0.2237 0.4993

299 A11 15.74 15.31 9.69 0.2294 0.5020 15.03 14.00 9.08 0.2383 0.4995

300 A12 19.74 17.54 11.95 0.2478 0.4953 16.48 14.12 8.36 0.2602 0.5016

301 A13 31.89 37.42 25.52 0.1905 0.5029 30.46 35.78 23.87 0.1907 0.5041

302 A14 33.96 38.95 25.51 0.1956 0.5046 32.66 36.98 24.99 0.1973 0.5025

303 A15 34.87 40.47 24.75 0.1948 0.5086 33.52 38.46 22.74 0.1976 0.5101

304 A16 34.72 40.72 25.29 0.1925 0.5080 33.37 38.38 24.84 0.1953 0.5053

305 A17 34.84 40.26 25.09 0.1952 0.5075 33.60 38.01 24.58 0.1984 0.5049

306 A18 34.13 39.90 24.44 0.1934 0.5087 33.87 39.57 23.29 0.1943 0.5107

307 A19 32.88 38.02 25.54 0.1935 0.5034 32.15 36.38 25.03 0.1970 0.5015

308 A20 4.95 3.68 2.60 0.2914 0.4873 4.19 2.87 2.10 0.3131 0.4823

309 A21 12.29 9.97 7.00 0.2690 0.4908 11.58 9.04 6.48 0.2778 0.4883

310 A22 23.06 23.43 13.15 0.2228 0.5094 22.68 22.58 12.22 0.2279 0.5106

311 B1 2.96 2.86 2.07 0.2270 0.4945 2.58 2.44 1.69 0.2325 0.4964

312 B2 3.31 2.97 1.92 0.2472 0.4984 2.89 2.47 1.49 0.2603 0.5008

313 B3 3.63 3.10 1.81 0.2611 0.5024 3.20 2.57 1.35 0.2794 0.5050

314 B4 4.12 3.18 1.57 0.2916 0.5062 3.62 2.61 1.06 0.3152 0.5112

315 B5 7.25 7.12 4.25 0.2286 0.5054 6.97 6.53 3.90 0.2391 0.5040

316 B6 8.19 7.23 3.55 0.2576 0.5111 7.60 6.50 2.88 0.2672 0.5143

317 B7 8.77 7.07 2.97 0.2836 0.5142 8.17 6.26 2.20 0.3006 0.5184

318 B8 10.13 7.11 2.57 0.3257 0.5139 9.30 6.22 1.78 0.3447 0.5186

319 B9 16.77 18.20 11.59 0.2066 0.5048 15.47 16.38 10.56 0.2113 0.5034

320 B10 17.27 17.92 10.64 0.2172 0.5072 16.06 16.29 9.69 0.2219 0.5065

Table A.24: Nikon D100 and D40 measurements by HDR characterisation (bright-side IT8.7/1 – patch

index: 281-288 and dark-side – patch index: 289-320).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

321 B11 17.68 17.68 9.97 0.2261 0.5087 16.63 16.35 9.13 0.2300 0.5087

322 B12 19.13 17.75 8.01 0.2473 0.5163 17.89 16.32 7.01 0.2523 0.5176

323 B13 28.45 34.61 23.74 0.1839 0.5034 26.88 31.98 23.04 0.1868 0.4999

324 B14 30.41 32.92 23.70 0.2043 0.4977 29.17 31.35 22.90 0.2054 0.4966

325 B15 33.20 38.12 20.37 0.1994 0.5151 32.22 36.40 19.07 0.2028 0.5155

326 B16 27.37 31.83 21.05 0.1928 0.5044 26.54 29.91 20.02 0.1983 0.5029

327 B17 30.45 33.21 20.60 0.2063 0.5063 29.71 31.95 19.88 0.2090 0.5057

328 B18 29.64 36.20 20.25 0.1872 0.5144 28.22 34.41 19.63 0.1871 0.5134

329 B19 27.25 31.47 23.54 0.1913 0.4969 26.57 30.64 23.41 0.1910 0.4956

330 B20 4.20 3.54 2.28 0.2614 0.4969 3.53 2.77 1.63 0.2823 0.4988

331 B21 8.64 6.86 3.34 0.2845 0.5079 7.92 6.01 2.61 0.2993 0.5107

332 B22 14.85 14.05 7.81 0.2385 0.5078 14.12 13.19 6.74 0.2432 0.5113

333 C1 4.20 4.31 2.64 0.2188 0.5053 3.72 3.77 2.28 0.2216 0.5056

334 C2 4.44 4.39 2.16 0.2317 0.5146 3.99 3.82 1.78 0.2393 0.5160

335 C3 4.71 4.46 1.84 0.2439 0.5206 4.23 3.91 1.38 0.2526 0.5250

336 C4 4.95 4.54 1.40 0.2566 0.5290 4.55 4.00 1.01 0.2690 0.5328

337 C5 11.94 12.61 6.08 0.2177 0.5174 11.13 11.44 5.45 0.2237 0.5172

338 C6 12.71 12.61 4.28 0.2369 0.5286 11.81 11.50 3.41 0.2428 0.5320

339 C7 13.04 12.35 2.92 0.2520 0.5368 12.23 11.27 2.10 0.2607 0.5407

340 C8 14.12 12.23 1.79 0.2783 0.5424 13.07 11.05 1.06 0.2872 0.5464

341 C9 18.50 20.34 11.88 0.2060 0.5096 16.95 18.22 10.69 0.2103 0.5088

342 C10 18.76 20.29 10.55 0.2116 0.5147 17.46 18.68 9.45 0.2143 0.5157

343 C11 19.13 20.14 9.26 0.2193 0.5194 17.93 18.94 8.23 0.2195 0.5217

344 C12 20.79 20.63 5.41 0.2399 0.5359 19.41 19.08 4.44 0.2435 0.5384

345 C13 25.31 31.42 23.29 0.1787 0.4992 24.17 30.19 21.96 0.1781 0.5005

346 C14 27.06 28.45 22.24 0.2080 0.4919 26.00 26.77 21.20 0.2118 0.4905

347 C15 32.05 37.52 16.05 0.1994 0.5252 29.71 34.07 14.61 0.2033 0.5245

348 C16 21.69 24.61 16.42 0.1971 0.5033 20.26 22.80 15.39 0.1985 0.5024

349 C17 26.39 27.26 16.25 0.2180 0.5068 25.04 25.47 15.52 0.2208 0.5053

350 C18 26.82 33.98 17.52 0.1821 0.5191 24.14 29.95 15.69 0.1855 0.5179

351 C19 23.22 26.28 22.73 0.1913 0.4870 21.60 24.44 22.11 0.1901 0.4839

352 C20 7.08 6.08 2.24 0.2699 0.5211 6.29 5.26 1.58 0.2797 0.5265

353 C21 10.66 10.74 5.49 0.2266 0.5135 9.72 9.70 4.87 0.2291 0.5140

354 C22 12.39 11.57 5.42 0.2452 0.5150 11.53 10.66 4.49 0.2493 0.5189

355 D1 3.06 3.21 2.09 0.2130 0.5024 2.69 2.77 1.74 0.2175 0.5042

356 D2 3.17 3.34 1.78 0.2162 0.5129 2.76 2.86 1.38 0.2221 0.5167

357 D3 3.24 3.50 1.55 0.2147 0.5216 2.79 2.90 1.14 0.2246 0.5252

358 D4 3.23 3.59 1.23 0.2130 0.5317 2.85 3.06 0.85 0.2218 0.5369

359 D5 9.27 10.30 5.08 0.2072 0.5178 8.50 9.22 4.54 0.2120 0.5173

360 D6 9.28 10.53 3.21 0.2099 0.5359 8.52 9.38 2.67 0.2168 0.5369

Table A.25: Nikon D100 and D40 measurements by HDR characterisation (dark-side IT8.7/1 – patch

index: 321-360).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

361 D7 8.86 10.08 2.32 0.2122 0.5432 8.18 9.24 1.52 0.2162 0.5495

362 D8 9.02 10.48 1.42 0.2115 0.5532 8.05 9.41 0.68 0.2129 0.5599

363 D9 20.06 23.02 10.23 0.2026 0.5231 18.69 21.37 9.31 0.2037 0.5238

364 D10 20.56 23.71 6.50 0.2079 0.5392 18.88 21.57 5.61 0.2102 0.5403

365 D11 19.93 23.39 3.88 0.2085 0.5505 18.62 21.61 3.12 0.2115 0.5523

366 D12 19.73 23.85 1.93 0.2059 0.5600 18.86 22.69 1.03 0.2082 0.5636

367 D13 23.16 29.83 22.68 0.1719 0.4984 22.62 28.90 22.17 0.1731 0.4977

368 D14 24.53 24.13 21.62 0.2174 0.4812 23.66 23.10 19.97 0.2200 0.4834

369 D15 31.39 36.16 13.46 0.2045 0.5299 29.52 34.42 12.07 0.2029 0.5322

370 D16 16.19 18.27 12.41 0.1978 0.5021 15.02 16.82 11.04 0.2000 0.5038

371 D17 22.09 21.72 12.42 0.2293 0.5076 20.84 20.07 11.20 0.2346 0.5081

372 D18 23.57 30.65 13.73 0.1798 0.5259 21.68 27.93 12.58 0.1813 0.5255

373 D19 18.12 20.71 20.48 0.1858 0.4777 17.14 19.14 20.02 0.1882 0.4728

374 D20 2.98 3.11 1.95 0.2150 0.5045 2.33 2.33 1.35 0.2255 0.5074

375 D21 13.64 14.22 1.51 0.2357 0.5529 12.79 13.22 0.87 0.2393 0.5568

376 D22 16.68 19.88 19.37 0.1789 0.4797 16.03 18.72 18.91 0.1813 0.4765

377 E1 3.63 4.03 2.50 0.2027 0.5068 3.22 3.55 2.09 0.2055 0.5093

378 E2 3.44 4.05 1.97 0.1963 0.5200 3.07 3.55 1.54 0.2018 0.5242

379 E3 3.37 4.27 1.62 0.1864 0.5318 2.91 3.67 1.17 0.1896 0.5372

380 E4 3.22 4.50 1.21 0.1735 0.5447 2.74 3.87 0.70 0.1741 0.5539

381 E5 12.14 14.66 6.88 0.1921 0.5222 11.18 13.34 6.09 0.1948 0.5230

382 E6 11.24 14.71 4.61 0.1830 0.5388 10.60 13.69 3.94 0.1861 0.5410

383 E7 10.41 14.75 2.97 0.1731 0.5518 9.59 13.54 2.26 0.1747 0.5553

384 E8 10.08 15.40 1.88 0.1634 0.5618 9.16 14.05 1.16 0.1640 0.5661

385 E9 19.04 22.51 12.32 0.1934 0.5146 17.96 21.10 11.37 0.1950 0.5152

386 E10 18.65 22.96 9.90 0.1899 0.5262 17.40 21.21 9.18 0.1917 0.5257

387 E11 17.81 23.00 8.25 0.1839 0.5341 16.68 21.30 7.14 0.1865 0.5361

388 E12 17.79 24.23 5.88 0.1784 0.5467 16.27 21.87 5.24 0.1808 0.5467

389 E13 21.63 28.27 22.77 0.1683 0.4950 20.79 27.22 20.83 0.1692 0.4984

390 E14 21.98 20.65 19.78 0.2248 0.4752 21.40 19.71 18.87 0.2291 0.4747

391 E15 29.24 34.39 10.74 0.2026 0.5361 29.24 33.50 10.09 0.2081 0.5365

392 E16 11.87 13.36 9.22 0.1978 0.5012 11.38 12.46 8.45 0.2034 0.5015

393 E17 19.09 17.52 9.58 0.2458 0.5076 18.10 16.15 8.56 0.2532 0.5082

394 E18 20.69 27.32 10.90 0.1787 0.5309 20.15 26.50 10.18 0.1799 0.5321

395 E19 14.75 16.65 18.94 0.1837 0.4663 14.39 15.99 18.65 0.1855 0.4640

396 E20 4.55 5.48 1.82 0.1976 0.5348 3.93 4.63 1.26 0.2036 0.5400

397 E21 11.26 14.39 2.99 0.1908 0.5486 10.78 13.64 2.48 0.1935 0.5509

398 E22 5.67 9.58 5.80 0.1359 0.5170 4.97 8.53 5.36 0.1334 0.5152

399 F1 2.70 3.10 2.35 0.1917 0.4961 2.31 2.62 1.87 0.1956 0.4995

400 F2 2.53 3.16 2.17 0.1791 0.5040 2.09 2.65 1.62 0.1793 0.5107

Table A.26: Nikon D100 and D40 measurements by HDR characterisation (dark-side IT8.7/1 – patch

index: 361-400).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

401 F3 2.42 3.32 2.05 0.1661 0.5120 1.90 2.69 1.54 0.1619 0.5164

402 F4 2.27 3.43 1.93 0.1529 0.5186 1.70 2.76 1.33 0.1440 0.5275

403 F5 6.45 8.08 5.11 0.1806 0.5085 5.80 7.19 4.51 0.1824 0.5087

404 F6 5.74 8.14 4.62 0.1621 0.5169 5.00 7.19 4.06 0.1600 0.5175

405 F7 4.97 8.08 3.84 0.1443 0.5282 4.31 7.24 3.22 0.1405 0.5316

406 F8 4.82 8.12 3.66 0.1402 0.5310 4.01 7.16 3.11 0.1327 0.5337

407 F9 13.14 16.10 9.96 0.1847 0.5093 11.98 14.46 9.06 0.1871 0.5083

408 F10 12.13 16.17 9.20 0.1719 0.5156 11.06 14.56 8.49 0.1735 0.5140

409 F11 11.51 16.48 8.91 0.1613 0.5197 10.30 14.97 7.80 0.1596 0.5217

410 F12 10.68 16.71 8.14 0.1495 0.5263 9.68 15.57 7.09 0.1463 0.5298

411 F13 20.46 27.28 22.18 0.1650 0.4948 18.89 24.94 20.29 0.1665 0.4946

412 F14 19.84 17.74 17.74 0.2341 0.4707 18.75 16.19 17.66 0.2383 0.4632

413 F15 29.16 33.89 8.69 0.2070 0.5412 28.20 32.40 8.05 0.2095 0.5417

414 F16 8.95 9.72 6.90 0.2040 0.4986 8.11 8.77 6.06 0.2054 0.5001

415 F17 16.39 14.20 7.15 0.2613 0.5095 15.26 12.69 6.26 0.2720 0.5089

416 F18 18.52 25.34 8.52 0.1746 0.5376 17.61 23.90 7.68 0.1764 0.5389

417 F19 11.78 12.95 17.54 0.1821 0.4506 10.99 11.78 17.20 0.1838 0.4430

418 F20 2.14 2.88 1.50 0.1717 0.5202 1.50 2.11 0.92 0.1670 0.5290

419 F21 3.79 6.51 1.45 0.1434 0.5538 3.09 5.55 1.04 0.1382 0.5582

420 F22 5.42 9.24 1.63 0.1455 0.5585 4.73 8.38 1.06 0.1416 0.5644

421 G1 2.15 2.35 2.09 0.1968 0.4843 1.72 1.87 1.59 0.1992 0.4872

422 G2 2.22 2.51 2.19 0.1912 0.4867 1.59 1.90 1.67 0.1815 0.4871

423 G3 2.01 2.51 2.27 0.1729 0.4861 1.51 1.90 1.72 0.1714 0.4863

424 G4 1.89 2.60 2.51 0.1561 0.4834 1.34 1.96 1.87 0.1476 0.4855

425 G5 6.36 7.73 5.85 0.1819 0.4974 5.61 6.83 5.30 0.1810 0.4960

426 G6 5.60 7.79 6.20 0.1588 0.4971 5.01 6.96 5.55 0.1590 0.4969

427 G7 4.98 7.58 6.68 0.1434 0.4918 4.31 6.82 5.93 0.1386 0.4935

428 G8 4.84 7.67 6.42 0.1391 0.4961 4.09 6.69 5.84 0.1341 0.4938

429 G9 12.97 16.14 10.85 0.1804 0.5051 11.85 14.22 10.14 0.1855 0.5008

430 G10 11.90 15.53 11.42 0.1705 0.5008 10.78 14.06 10.38 0.1705 0.5005

431 G11 11.00 15.60 11.75 0.1570 0.5010 10.10 14.38 10.68 0.1567 0.5019

432 G12 10.60 16.69 12.72 0.1417 0.5022 9.38 14.84 11.04 0.1415 0.5038

433 G13 18.43 25.23 21.37 0.1599 0.4926 17.31 23.14 19.88 0.1633 0.4911

434 G14 17.56 14.79 17.06 0.2417 0.4581 16.51 13.70 16.15 0.2441 0.4559

435 G15 28.03 32.68 6.31 0.2087 0.5475 26.11 30.05 5.92 0.2112 0.5468

436 G16 6.40 6.96 5.08 0.2032 0.4969 5.66 5.92 4.32 0.2107 0.4960

437 G17 13.79 11.04 5.32 0.2824 0.5086 12.38 9.66 4.24 0.2913 0.5114

438 G18 16.55 22.98 6.55 0.1738 0.5430 15.32 21.42 5.73 0.1732 0.5449

439 G19 9.15 9.76 16.17 0.1794 0.4305 8.55 9.00 15.28 0.1805 0.4277

440 G20 2.62 4.03 1.98 0.1520 0.5255 2.02 3.31 1.39 0.1451 0.5335

Table A.27: Nikon D100 and D40 measurements by HDR characterisation (dark-side IT8.7/1 – patch

index: 401-440).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

441 G21 3.63 5.22 3.84 0.1554 0.5027 3.09 4.58 3.05 0.1529 0.5091

442 G22 1.60 1.78 2.37 0.1813 0.4522 1.21 1.34 1.89 0.1795 0.4472

443 H1 2.07 2.22 2.22 0.1972 0.4755 1.70 1.79 1.68 0.2034 0.4794

444 H2 1.99 2.25 2.53 0.1840 0.4675 1.59 1.78 1.97 0.1862 0.4683

445 H3 2.00 2.37 2.95 0.1727 0.4598 1.50 1.77 2.36 0.1708 0.4534

446 H4 1.89 2.37 3.64 0.1562 0.4409 1.38 1.78 3.11 0.1480 0.4281

447 H5 5.19 5.88 5.65 0.1884 0.4795 4.65 5.33 5.00 0.1868 0.4815

448 H6 4.83 5.90 6.67 0.1704 0.4686 4.34 5.34 6.19 0.1685 0.4667

449 H7 4.33 5.73 8.24 0.1505 0.4485 3.81 5.16 7.47 0.1473 0.4481

450 H8 4.19 5.82 9.35 0.1403 0.4381 3.55 5.06 8.55 0.1351 0.4334

451 H9 12.88 14.82 11.08 0.1920 0.4969 12.02 13.72 10.51 0.1929 0.4952

452 H10 12.31 14.73 12.39 0.1821 0.4902 11.42 13.62 11.68 0.1821 0.4888

453 H11 11.87 14.66 13.57 0.1742 0.4842 10.94 13.37 12.80 0.1751 0.4815

454 H12 10.99 14.89 17.68 0.1529 0.4663 10.02 13.67 16.58 0.1513 0.4646

455 H13 17.12 23.80 20.54 0.1571 0.4916 15.90 21.89 19.75 0.1577 0.4883

456 H14 15.78 12.52 16.01 0.2508 0.4479 14.72 11.54 14.72 0.2538 0.4477

457 H15 26.90 31.16 4.91 0.2114 0.5509 25.64 29.57 4.36 0.2126 0.5518

458 H16 4.53 4.75 3.67 0.2090 0.4925 3.74 3.95 2.83 0.2093 0.4974

459 H17 11.59 8.66 3.78 0.3033 0.5100 10.58 7.72 3.00 0.3126 0.5133

460 H18 14.80 21.28 4.95 0.1698 0.5490 13.79 19.56 4.28 0.1723 0.5501

461 H19 7.11 7.35 14.27 0.1775 0.4129 6.37 6.65 13.14 0.1750 0.4112

462 H20 1.77 2.08 2.32 0.1774 0.4689 1.25 1.49 1.74 0.1728 0.4658

463 H21 3.07 4.17 4.99 0.1524 0.4656 2.52 3.57 4.34 0.1461 0.4649

464 H22 1.59 1.30 1.48 0.2488 0.4582 1.20 0.88 1.04 0.2725 0.4530

465 I1 2.62 2.64 3.21 0.2020 0.4583 2.23 2.27 2.58 0.2026 0.4641

466 I2 2.61 2.64 4.28 0.1894 0.4319 2.19 2.19 3.64 0.1907 0.4287

467 I3 2.60 2.71 5.89 0.1710 0.4003 2.19 2.14 5.36 0.1736 0.3824

468 I4 2.49 2.55 8.23 0.1522 0.3507 2.02 2.04 7.57 0.1463 0.3318

469 I5 6.59 7.08 6.61 0.1987 0.4805 5.89 6.29 6.00 0.1995 0.4787

470 I6 6.58 6.98 8.16 0.1940 0.4627 5.93 6.13 7.47 0.1969 0.4587

471 I7 6.26 6.66 9.85 0.1843 0.4417 5.72 5.95 8.88 0.1882 0.4402

472 I8 6.20 6.64 12.75 0.1722 0.4148 5.59 5.66 12.42 0.1748 0.3989

473 I9 13.07 14.48 11.16 0.1982 0.4941 12.01 13.01 10.54 0.2012 0.4904

474 I10 12.67 14.07 12.41 0.1942 0.4853 11.91 12.95 11.42 0.1983 0.4847

475 I11 12.66 14.03 13.79 0.1915 0.4774 11.94 12.89 12.57 0.1965 0.4774

476 I12 12.92 13.99 17.80 0.1871 0.4559 11.51 12.39 15.59 0.1887 0.4568

477 I13 16.22 22.53 20.65 0.1559 0.4873 15.02 20.80 19.12 0.1563 0.4870

478 I14 14.40 10.99 14.81 0.2576 0.4422 13.41 10.09 13.50 0.2612 0.4425

479 I15 26.02 29.41 3.89 0.2174 0.5528 24.44 27.57 3.16 0.2185 0.5545

480 I16 3.25 3.35 2.68 0.2108 0.4900 2.51 2.56 1.84 0.2163 0.4963

Table A.28: Nikon D100 and D40 measurements by HDR characterisation (dark-side IT8.7/1 – patch

index: 441-480).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

481 I17 10.13 7.11 2.84 0.3234 0.5107 8.44 5.74 1.98 0.3363 0.5141

482 I18 13.10 19.11 3.75 0.1686 0.5530 11.85 17.51 2.82 0.1675 0.5569

483 I19 5.49 5.52 12.94 0.1729 0.3907 4.87 4.86 11.86 0.1719 0.3859

484 I20 3.59 4.05 6.73 0.1697 0.4314 3.05 3.42 5.88 0.1692 0.4276

485 I21 4.94 6.29 10.05 0.1528 0.4372 4.45 5.74 9.11 0.1511 0.4382

486 I22 1.12 1.15 0.87 0.2132 0.4929 0.77 0.77 0.46 0.2249 0.5054

487 J1 1.42 1.38 1.69 0.2091 0.4563 1.03 0.95 1.20 0.2182 0.4528

488 J2 1.47 1.33 2.23 0.2093 0.4258 1.05 0.87 1.75 0.2165 0.4048

489 J3 1.51 1.30 3.17 0.1982 0.3834 1.09 0.83 2.66 0.2026 0.3477

490 J4 1.48 1.17 4.91 0.1757 0.3116 1.11 0.78 4.25 0.1734 0.2745

491 J5 4.37 4.29 4.34 0.2136 0.4724 3.85 3.72 3.82 0.2166 0.4709

492 J6 4.65 4.35 5.94 0.2120 0.4463 4.09 3.75 5.12 0.2159 0.4460

493 J7 4.65 4.23 7.03 0.2089 0.4267 4.23 3.60 6.56 0.2169 0.4159

494 J8 5.00 4.11 10.08 0.2064 0.3817 4.40 3.48 9.28 0.2085 0.3708

495 J9 10.76 11.62 9.32 0.2020 0.4910 9.91 10.53 8.61 0.2046 0.4893

496 J10 10.71 11.19 10.08 0.2052 0.4824 9.80 10.19 9.27 0.2058 0.4816

497 J11 11.08 11.11 11.90 0.2076 0.4685 10.41 10.59 10.68 0.2070 0.4735

498 J12 11.62 11.25 15.46 0.2050 0.4465 10.57 10.04 14.30 0.2072 0.4428

499 J13 14.98 20.97 19.55 0.1543 0.4862 13.79 19.13 18.38 0.1550 0.4838

500 J14 12.79 9.27 13.23 0.2671 0.4357 11.95 8.38 12.39 0.2734 0.4315

501 J15 24.68 28.05 2.59 0.2178 0.5570 23.74 26.75 1.99 0.2204 0.5586

502 J16 2.19 2.28 1.86 0.2087 0.4889 1.56 1.58 1.14 0.2172 0.4962

503 J17 8.16 5.42 2.01 0.3418 0.5109 7.32 4.61 1.29 0.3645 0.5164

504 J18 11.36 16.91 2.24 0.1673 0.5601 10.56 15.73 1.83 0.1677 0.5618

505 J19 4.12 3.98 11.21 0.1693 0.3675 3.70 3.57 10.31 0.1676 0.3645

506 J20 1.15 0.93 3.31 0.1839 0.3338 0.74 0.54 2.66 0.1756 0.2899

507 J21 3.99 3.70 6.96 0.1983 0.4144 3.53 3.21 6.41 0.1991 0.4075

508 J22 1.04 1.13 1.18 0.1933 0.4722 0.62 0.74 0.43 0.1920 0.5121

509 K1 1.78 1.67 1.77 0.2221 0.4677 1.36 1.22 1.19 0.2334 0.4727

510 K2 1.96 1.68 1.94 0.2377 0.4582 1.53 1.21 1.48 0.2542 0.4510

511 K3 2.16 1.67 2.32 0.2521 0.4400 1.73 1.22 1.80 0.2724 0.4318

512 K4 2.56 1.71 2.87 0.2770 0.4183 2.11 1.28 2.35 0.2969 0.4063

513 K5 3.68 3.34 3.36 0.2309 0.4707 3.12 2.77 2.89 0.2343 0.4674

514 K6 4.23 3.35 4.31 0.2510 0.4472 3.69 2.80 3.79 0.2589 0.4416

515 K7 4.55 3.22 5.14 0.2663 0.4246 3.95 2.63 4.33 0.2800 0.4198

516 K8 5.24 3.24 6.56 0.2849 0.3967 4.60 2.61 5.90 0.2989 0.3825

517 K9 9.22 9.42 7.76 0.2122 0.4879 8.36 8.27 7.14 0.2172 0.4839

518 K10 9.67 9.07 9.18 0.2232 0.4712 8.88 8.24 8.04 0.2270 0.4735

519 K11 10.44 9.20 10.33 0.2328 0.4614 9.70 8.37 9.13 0.2385 0.4632

520 K12 11.93 8.98 13.55 0.2547 0.4316 10.95 8.11 11.96 0.2599 0.4332

Table A.29: Nikon D100 and D40 measurements by HDR characterisation (dark-side IT8.7/1 – patch

index: 481-520).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

521 K13 14.04 19.80 19.03 0.1526 0.4841 12.89 18.21 17.20 0.1526 0.4854

522 K14 11.81 8.25 12.52 0.2729 0.4289 10.79 7.37 11.06 0.2793 0.4292

523 K15 23.74 26.54 1.67 0.2225 0.5596 21.92 24.21 1.15 0.2257 0.5608

524 K16 1.59 1.66 1.40 0.2073 0.4869 0.94 0.96 0.67 0.2166 0.4983

525 K17 6.98 4.41 1.58 0.3585 0.5097 6.09 3.64 0.85 0.3855 0.5181

526 K18 10.03 14.90 1.51 0.1686 0.5633 9.26 13.82 1.03 0.1687 0.5662

527 K19 3.31 3.14 9.61 0.1671 0.3566 2.88 2.67 9.06 0.1644 0.3426

528 K20 2.15 1.62 3.14 0.2393 0.4066 1.64 1.09 2.50 0.2576 0.3846

529 K21 5.68 4.63 7.97 0.2295 0.4207 5.29 4.12 7.35 0.2372 0.4161

530 K22 0.99 1.16 1.36 0.1767 0.4642 0.59 0.74 0.79 0.1686 0.4733

531 L1 1.74 1.67 1.49 0.2224 0.4807 1.34 1.22 0.98 0.2364 0.4862

532 L2 1.94 1.68 1.52 0.2446 0.4773 1.54 1.22 1.07 0.2676 0.4764

533 L3 2.16 1.74 1.48 0.2643 0.4787 1.75 1.26 1.13 0.2923 0.4715

534 L4 2.61 1.82 1.55 0.3027 0.4735 2.14 1.34 1.17 0.3317 0.4684

535 L5 3.67 3.32 2.77 0.2375 0.4839 3.15 2.76 2.32 0.2445 0.4821

536 L6 4.21 3.27 3.04 0.2700 0.4719 3.74 2.76 2.46 0.2842 0.4732

537 L7 4.77 3.23 3.12 0.3050 0.4644 4.12 2.62 2.47 0.3241 0.4640

538 L8 5.66 3.49 3.25 0.3338 0.4637 5.02 2.86 2.67 0.3590 0.4603

539 L9 8.93 9.02 6.72 0.2173 0.4938 8.18 8.19 6.12 0.2190 0.4934

540 L10 9.43 9.00 7.02 0.2280 0.4894 8.72 7.97 6.36 0.2367 0.4868

541 L11 10.21 8.86 7.76 0.2456 0.4792 9.32 7.91 6.75 0.2515 0.4802

542 L12 11.30 8.71 8.17 0.2715 0.4710 10.43 7.85 7.03 0.2797 0.4732

543 L13 12.27 17.76 18.09 0.1474 0.4801 11.31 15.97 16.34 0.1509 0.4793

544 L14 9.00 5.71 9.78 0.2903 0.4145 8.34 5.10 8.69 0.3008 0.4137

545 L15 21.24 22.93 0.62 0.2314 0.5622 20.22 21.61 -0.01 0.2349 0.5648

546 L16 1.02 1.09 1.03 0.1996 0.4793 0.50 0.51 0.38 0.2152 0.4937

547 L17 4.57 2.82 1.13 0.3633 0.5052 3.78 2.16 0.49 0.4016 0.5165

548 L18 7.80 11.51 0.54 0.1713 0.5690 7.27 10.70 0.10 0.1731 0.5730

549 L19 1.93 1.56 7.15 0.1644 0.3006 1.55 1.24 6.38 0.1577 0.2842

550 L20 2.89 2.01 2.43 0.2867 0.4485 2.40 1.50 1.90 0.3142 0.4410

551 L21 5.63 4.55 4.65 0.2562 0.4663 5.29 4.17 3.99 0.2652 0.4703

552 L22 1.49 1.25 0.87 0.2597 0.4929 1.03 0.78 0.39 0.2981 0.5049

553 Dmin 23.09 26.74 17.44 0.1938 0.5051 22.01 25.18 15.90 0.1968 0.5065

554 N1 18.13 20.45 14.57 0.1967 0.4993 17.14 19.43 12.78 0.1976 0.5040

555 N2 16.73 18.95 13.13 0.1967 0.5011 15.62 17.54 11.52 0.1994 0.5039

556 N3 14.69 16.70 11.43 0.1961 0.5019 13.69 15.31 10.62 0.1990 0.5007

557 N4 12.98 14.56 10.07 0.1984 0.5010 12.30 13.49 9.53 0.2022 0.4992

558 N5 11.50 12.71 8.83 0.2012 0.5003 10.87 11.96 8.22 0.2022 0.5009

559 N6 9.96 10.97 7.95 0.2008 0.4977 9.19 10.03 7.29 0.2026 0.4973

560 N7 8.60 9.51 6.82 0.2005 0.4984 7.75 8.44 5.98 0.2034 0.4988

Table A.30: Nikon D100 and D40 measurements by HDR characterisation (dark-side IT8.7/1 – patch

index: 521-560).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

561 N8 7.41 8.10 5.77 0.2028 0.4985 6.68 7.12 5.07 0.2076 0.4979

562 N9 6.34 7.00 5.07 0.2005 0.4979 5.72 6.11 4.38 0.2069 0.4976

563 N10 5.54 5.96 4.46 0.2046 0.4951 4.77 5.15 3.69 0.2049 0.4980

564 N11 4.61 4.93 3.91 0.2042 0.4913 3.98 4.26 3.09 0.2066 0.4969

565 N12 3.98 4.23 3.39 0.2052 0.4906 3.36 3.52 2.63 0.2098 0.4945

566 N13 3.43 3.64 3.04 0.2046 0.4878 2.81 2.93 2.27 0.2098 0.4922

567 N14 2.90 3.06 2.60 0.2049 0.4867 2.34 2.41 1.82 0.2130 0.4933

568 N15 2.48 2.58 2.17 0.2080 0.4868 1.89 1.92 1.51 0.2146 0.4904

569 N16 2.06 2.12 1.89 0.2086 0.4826 1.50 1.51 1.14 0.2172 0.4929

570 N17 1.62 1.67 1.44 0.2082 0.4854 1.23 1.23 0.89 0.2199 0.4951

571 N18 1.37 1.39 1.23 0.2110 0.4832 1.04 1.01 0.77 0.2236 0.4913

572 N19 1.15 1.19 1.11 0.2068 0.4793 0.77 0.77 0.58 0.2193 0.4925

573 N20 1.01 1.06 0.93 0.2052 0.4842 0.63 0.64 0.48 0.2170 0.4933

574 N21 0.87 0.92 0.87 0.2017 0.4789 0.52 0.52 0.41 0.2170 0.4900

575 N22 0.77 0.83 0.80 0.1980 0.4776 0.43 0.44 0.34 0.2148 0.4906

576 Dmax 0.69 0.76 0.76 0.1943 0.4756 0.39 0.40 0.33 0.2124 0.4871

Table A.31: Nikon D100 and D40 measurements by HDR characterisation (dark-side IT8.7/1 – patch

index: 561-576).
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Radiometric measurements Canon 350D measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

1 A1 995.63 769.20 168.81 0.3054 0.5309 1012.00 794.99 183.49 0.3001 0.5305

2 B1 3334.80 2572.00 657.77 0.3039 0.5274 3313.93 2616.25 731.45 0.2962 0.5261

3 C1 1141.34 1150.00 802.56 0.2195 0.4976 1152.74 1145.77 756.85 0.2237 0.5003

4 D1 745.52 778.40 153.67 0.2315 0.5438 756.09 778.77 143.24 0.2350 0.5447

5 E1 1306.82 1153.00 799.08 0.2489 0.4942 1255.95 1117.23 759.71 0.2476 0.4955

6 F1 1230.12 1523.00 672.44 0.1886 0.5253 1210.60 1474.50 648.31 0.1916 0.5251

7 A2 3782.08 2603.00 161.71 0.3493 0.5409 3665.68 2597.90 252.28 0.3379 0.5388

8 B2 814.61 747.00 989.62 0.2174 0.4485 813.86 748.64 899.14 0.2208 0.4571

9 C2 2441.79 1472.00 310.03 0.3838 0.5205 2437.53 1562.42 360.51 0.3617 0.5217

10 D2 581.89 407.50 276.14 0.3094 0.4875 576.17 413.30 256.70 0.3054 0.4930

11 E2 2007.70 2164.00 231.15 0.2284 0.5539 1876.52 2020.10 195.06 0.2291 0.5549

12 F2 2266.96 1780.00 97.39 0.3099 0.5475 2201.09 1732.40 96.03 0.3092 0.5476

13 A3 389.11 343.60 672.03 0.2059 0.4091 389.15 337.37 600.45 0.2147 0.4187

14 B3 1093.39 1443.00 265.01 0.1858 0.5519 1116.02 1423.04 256.35 0.1922 0.5513

15 C3 1652.94 892.00 102.73 0.4310 0.5233 1749.88 1064.67 174.89 0.3836 0.5252

16 D3 3919.03 3417.00 202.02 0.2810 0.5513 3756.82 3296.34 229.62 0.2788 0.5505

17 E3 1646.87 991.60 467.07 0.3676 0.4980 1672.82 1068.57 472.59 0.3500 0.5030

18 F3 419.54 573.30 519.02 0.1587 0.4879 417.65 556.89 498.19 0.1627 0.4882

19 A4 7008.98 6508.00 2488.92 0.2501 0.5225 6296.21 5806.93 2193.75 0.2519 0.5227

20 B4 4046.31 3787.00 1494.28 0.2477 0.5217 3710.41 3455.20 1380.44 0.2487 0.5211

21 C4 2192.16 2053.00 815.23 0.2475 0.5215 2006.57 1863.14 732.82 0.2496 0.5215

22 D4 954.32 890.70 356.41 0.2481 0.5211 868.45 817.09 309.70 0.2472 0.5233

23 E4 349.61 327.80 133.37 0.2468 0.5206 334.58 314.37 121.86 0.2471 0.5224

24 F4 109.86 102.30 41.44 0.2485 0.5206 97.08 90.51 36.41 0.2483 0.5209

25 A1 2.41 1.80 0.44 0.3137 0.5272 3.32 2.74 0.80 0.2842 0.5267

26 B1 7.22 5.30 1.47 0.3169 0.5234 8.24 6.52 1.94 0.2947 0.5246

27 C1 2.69 2.61 1.84 0.2272 0.4960 3.70 3.53 1.99 0.2361 0.5074

28 D1 1.81 1.82 0.47 0.2372 0.5367 2.85 2.71 0.65 0.2512 0.5366

29 E1 3.08 2.60 1.72 0.2608 0.4953 3.76 3.27 1.84 0.2577 0.5046

30 F1 2.84 3.27 1.53 0.2011 0.5211 2.99 3.30 1.46 0.2106 0.5222

31 A2 6.84 4.62 0.64 0.3505 0.5327 7.51 5.57 0.87 0.3209 0.5352

32 B2 1.63 1.36 1.64 0.2419 0.4542 2.84 2.49 1.99 0.2464 0.4855

33 C2 4.90 2.88 0.72 0.3900 0.5157 6.00 4.13 1.06 0.3373 0.5225

34 D2 1.59 1.07 0.61 0.3267 0.4946 2.61 2.05 0.87 0.2901 0.5130

35 E2 3.76 3.89 0.56 0.2358 0.5488 4.49 4.55 0.80 0.2390 0.5449

36 F2 4.61 3.56 0.57 0.3088 0.5365 4.63 3.79 0.63 0.2926 0.5383

37 A3 0.93 0.80 1.21 0.2246 0.4348 2.16 1.92 1.41 0.2452 0.4911

38 B3 1.98 2.41 0.59 0.1985 0.5436 3.28 3.53 0.91 0.2225 0.5388

39 C3 3.51 1.93 0.33 0.4197 0.5193 4.99 3.45 0.82 0.3369 0.5245

40 D3 6.79 5.70 0.60 0.2887 0.5452 7.94 6.75 0.90 0.2839 0.5429

41 E3 3.41 2.02 0.91 0.3743 0.4989 4.45 3.17 1.25 0.3188 0.5118

42 F3 1.28 1.45 1.08 0.1949 0.4968 2.00 2.01 1.14 0.2246 0.5083

43 A4 8.69 7.78 3.24 0.2573 0.5182 9.74 8.84 3.39 0.2556 0.5217

44 B4 5.39 4.87 2.02 0.2551 0.5187 6.76 6.18 2.32 0.2540 0.5227

45 C4 3.47 3.17 1.29 0.2529 0.5198 4.81 4.32 1.61 0.2586 0.5222

46 D4 1.90 1.68 0.71 0.2600 0.5173 3.46 3.01 1.06 0.2672 0.5232

47 E4 1.05 0.93 0.35 0.2617 0.5215 2.39 2.09 0.73 0.2661 0.5232

48 F4 0.72 0.65 0.22 0.2588 0.5256 1.79 1.54 0.48 0.2716 0.5263

Table A.32: Radiometric measurements of test colour samples (transparency) by a spectroradiometer

(Jeti Specbos 1200) and Canon 350D measurements by HDR characterisation (bright & dark-sides

GretagMacbeth ColorCheckers).
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Nikon D100 measurements Nikon D40 measurements

Index Patch# X Y[ cd/m2] Z u’ v’ X Y[ cd/m2] Z u’ v’

1 A1 1563.51 1209.45 300.38 0.3054 0.5309 1529.01 1168.31 300.86 0.3065 0.5269

2 B1 5388.68 4041.83 1114.36 0.3039 0.5274 4730.72 3579.01 1109.47 0.3065 0.5217

3 C1 1754.96 1663.61 1152.08 0.2195 0.4976 1724.44 1645.95 1140.15 0.2312 0.4965

4 D1 1123.48 1132.00 216.52 0.2315 0.5438 1097.44 1109.21 212.98 0.2389 0.5433

5 E1 1938.59 1643.50 1131.49 0.2489 0.4942 1929.11 1619.97 1113.76 0.2610 0.4931

6 F1 1818.31 2146.55 1003.45 0.1886 0.5253 1782.92 2054.50 987.00 0.2005 0.5200

7 A2 5816.25 3963.53 403.72 0.3493 0.5409 5127.59 3598.59 347.07 0.3410 0.5385

8 B2 1320.94 1140.22 1366.04 0.2174 0.4485 1295.98 1116.05 1302.31 0.2362 0.4577

9 C2 3758.13 2325.53 565.57 0.3838 0.5205 3523.91 2200.79 547.96 0.3692 0.5188

10 D2 1042.99 721.89 417.94 0.3094 0.4875 995.71 693.53 401.29 0.3160 0.4953

11 E2 2780.15 2951.69 299.99 0.2284 0.5539 2690.60 2773.74 301.36 0.2381 0.5523

12 F2 3267.35 2520.37 151.11 0.3099 0.5475 3177.95 2468.17 133.69 0.3131 0.5471

13 A3 625.19 541.31 888.94 0.2059 0.4091 611.49 527.14 859.59 0.2204 0.4275

14 B3 1632.16 2016.94 396.01 0.1858 0.5519 1599.64 1902.93 395.86 0.2042 0.5466

15 C3 2659.14 1573.26 282.62 0.4310 0.5233 2594.40 1537.27 267.46 0.3923 0.5230

16 D3 5609.20 4854.46 290.62 0.2810 0.5513 5287.17 4467.88 306.34 0.2888 0.5491

17 E3 2544.93 1595.77 722.79 0.3676 0.4980 2544.25 1592.41 711.83 0.3563 0.5017

18 F3 661.74 818.98 759.73 0.1587 0.4879 638.28 786.74 728.27 0.1746 0.4842

19 A4 9909.69 9027.25 3347.35 0.2501 0.5225 8842.42 8049.25 3065.92 0.2549 0.5220

20 B4 5719.89 5271.14 1910.92 0.2477 0.5217 5165.40 4543.92 1916.52 0.2613 0.5172

21 C4 2880.11 2672.47 1049.17 0.2475 0.5215 2911.87 2612.87 1074.60 0.2570 0.5188

22 D4 1326.38 1197.24 485.98 0.2481 0.5211 1289.35 1176.01 466.36 0.2537 0.5207

23 E4 505.84 463.13 193.00 0.2468 0.5206 504.86 460.81 193.03 0.2526 0.5187

24 F4 155.71 141.03 60.98 0.2485 0.5206 152.71 139.86 56.38 0.2524 0.5202

25 A1 10.97 7.94 3.41 0.3137 0.5272 8.81 6.19 2.65 0.3218 0.5082

26 B1 26.26 18.00 6.48 0.3169 0.5234 22.04 15.09 5.20 0.3341 0.5145

27 C1 13.21 10.24 6.54 0.2272 0.4960 10.40 8.02 5.07 0.2852 0.4946

28 D1 8.68 7.13 2.95 0.2372 0.5367 5.80 4.81 1.66 0.2799 0.5220

29 E1 14.53 10.67 6.25 0.2608 0.4953 11.16 8.15 4.88 0.3016 0.4955

30 F1 9.90 8.71 4.46 0.2011 0.5211 7.50 6.69 3.54 0.2533 0.5082

31 A2 22.38 15.15 4.50 0.3505 0.5327 19.25 12.59 3.44 0.3524 0.5188

32 B2 11.99 8.88 5.70 0.2419 0.4542 8.62 6.17 4.60 0.2999 0.4830

33 C2 19.40 12.74 4.77 0.3900 0.5157 15.01 9.38 3.12 0.3635 0.5114

34 D2 14.44 10.09 5.05 0.3267 0.4946 9.92 6.49 3.22 0.3397 0.4995

35 E2 15.01 12.36 4.17 0.2358 0.5488 10.77 8.92 2.59 0.2828 0.5269

36 F2 16.10 11.57 3.78 0.3088 0.5365 12.01 8.55 2.37 0.3261 0.5221

37 A3 7.72 5.99 4.40 0.2246 0.4348 5.28 3.97 3.34 0.2820 0.4774

38 B3 10.18 8.95 3.85 0.1985 0.5436 7.41 6.59 2.97 0.2573 0.5149

39 C3 19.47 12.97 4.81 0.4197 0.5193 14.38 8.99 3.20 0.3622 0.5094

40 D3 24.46 18.33 5.26 0.2887 0.5452 18.78 13.86 3.34 0.3174 0.5270

41 E3 18.43 12.44 5.46 0.3743 0.4989 13.43 8.61 3.89 0.3481 0.5024

42 F3 7.60 6.27 4.07 0.1949 0.4968 5.01 4.15 2.90 0.2640 0.4916

43 A4 27.13 20.67 8.86 0.2573 0.5182 22.80 17.43 7.25 0.2980 0.5126

44 B4 19.46 15.35 6.66 0.2551 0.5187 14.96 11.63 5.27 0.2915 0.5101

45 C4 14.23 11.46 5.07 0.2529 0.5198 10.08 7.94 3.51 0.2887 0.5115

46 D4 10.92 8.79 4.20 0.2600 0.5173 6.48 5.14 2.45 0.2853 0.5086

47 E4 7.83 6.34 3.13 0.2617 0.5215 4.02 3.19 1.61 0.2840 0.5062

48 F4 5.48 4.48 2.36 0.2588 0.5256 2.87 2.29 1.24 0.2802 0.5036

Table A.33: Nikon D100 and D40 measurements of test colour samples by HDR characterisation (bright

& dark-sides GretagMacbeth ColorCheckers).
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A.4 Physical Measurements of the High-Luminance Display

High-luminance display signals Normalised radiometric measurements

Index Patch# R G B X Y Z L A B

1 A1 0 0 0 0.37 0.6 0.37 5.42 -8.4 2.38

2 A2 0 0 85 1.64 1.29 6.45 11.23 11.11 -38.56

3 A3 0 0 170 8.66 5.48 39.55 28.05 34.05 -80.58

4 A4 0 0 255 27.38 18.12 125.73 49.65 45.68 -116.98

5 A5 0 85 0 2.59 5.23 0.8 27.38 -37.32 32.07

6 A6 0 85 85 4.33 6.74 7.81 31.21 -25.8 -9.74

7 A7 0 85 170 11.53 10.85 42.35 39.33 7.83 -64.74

8 A8 0 85 255 30.32 23.62 128.67 55.7 30.94 -108.32

9 A9 0 170 0 16.56 34.94 3.63 65.7 -74.24 70.28

10 B1 0 170 85 18.76 36.96 11.56 67.25 -69.12 39.64

11 B2 0 170 170 26.71 41.85 48.81 70.77 -48.05 -18.3

12 B3 0 170 255 46.06 55.17 137.52 79.14 -19.22 -73.12

13 B4 0 255 0 47.7 100.57 9.66 100.22 -105.5 102.52

14 B5 0 255 85 51.21 104.93 19.33 101.88 -103.16 79.93

15 B6 0 255 170 59.79 110.56 58.15 103.95 -90.65 28.81

16 B7 0 255 255 79.6 124.53 148.25 108.8 -68.87 -27.99

17 B8 85 0 0 4.51 3.08 0.71 20.38 23.39 21.78

18 B9 85 0 85 6.03 3.96 6.56 23.55 27.96 -17.83

19 C1 85 0 170 13.61 8.45 40.72 34.91 40.9 -70.3

20 C2 85 0 255 32.67 21.44 127.7 53.43 49.3 -111.65

21 C3 85 85 0 7.42 8.79 1.22 35.57 -9.58 39.76

22 C4 85 85 85 9.25 10.15 8.07 38.11 -4.37 1.14

23 C5 85 85 170 17.14 14.73 43.32 45.26 17.09 -55.73

24 C6 85 85 255 36.54 27.83 131 59.73 35.41 -102.76

25 C7 85 170 0 22.38 40.16 4.16 69.58 -61.6 73.65

26 C8 85 170 85 24.85 42.3 12.37 71.08 -57.15 43.87

27 C9 85 170 170 32.46 46.76 43.5 74.04 -40.26 -6.35

28 D1 85 170 255 53.09 61.36 137.91 82.57 -15.08 -67.41

29 D2 85 255 0 54.23 107.07 10.29 102.67 -98.78 104.68

30 D3 85 255 85 58.24 111.95 19.74 104.45 -96.52 83.5

31 D4 85 255 170 66.95 117.15 59.81 106.28 -84.33 31.16

32 D5 85 255 255 87.13 131.54 148.97 111.1 -64.45 -24.42

33 D6 170 0 0 25.64 15.93 2.1 46.89 50.46 49.63

34 D7 170 0 85 27.44 17 7.27 48.27 51.89 21.79

35 D8 170 0 170 35.14 21.55 40.8 53.55 57.37 -38.25

36 D9 170 0 255 55.23 35.01 125.92 65.75 62.86 -89.33

37 E1 170 85 0 29.61 22.94 2.74 55.01 31.28 58.17

38 E2 170 85 85 32.2 24.86 9.02 56.94 32.5 30.12

39 E3 170 85 170 40.29 29.49 43.41 61.21 40.99 -28.34

40 E4 170 85 255 61 43.39 131.24 71.82 50.69 -82.07

41 E5 170 170 0 45.87 55.46 5.65 79.3 -20.48 82.51

42 E6 170 170 85 48.52 57.97 13.18 80.72 -19.21 58.22

43 E7 170 170 170 58.17 64.39 50.2 84.17 -9.28 3.22

44 E8 170 170 255 78.51 78.01 138.23 90.78 6.63 -53.45

45 E9 170 255 0 78.76 124.28 11.82 108.72 -70.17 110.38

46 F1 170 255 85 83.7 130.29 20.81 110.69 -69.12 92.06

47 F2 170 255 170 93.08 136.55 59.65 112.69 -60.55 42.37

48 F3 170 255 255 114.23 151.23 148.85 117.15 -44.84 -13.92

49 F4 255 0 0 85.32 52.04 3.33 77.3 77.87 92.25

50 F5 255 0 85 87.45 53.25 8.21 78.02 78.73 69.44

Table A.34: Device signals and corresponding radiometric measurements of the high-luminance display

(patch index: 1-50).
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High-luminance display signals Normalised radiometric measurements

Index Patch# R G B X Y Z L A B

51 F6 255 0 170 94.87 57.64 43.21 80.54 81.19 5.23

52 F7 255 0 255 113.69 70.4 129.77 87.19 83.43 -54.69

53 F8 255 85 0 89 59.32 4 81.47 66.72 95.1

54 F9 255 85 85 91.47 61.49 9.76 82.64 66.11 71.9

55 G1 255 85 170 98.97 65.8 45.62 84.89 69.5 9.78

56 G2 255 85 255 118.12 78.75 133.96 91.12 73.28 -50.39

57 G3 255 170 0 105.84 93.8 7.05 97.55 26.33 107.69

58 G4 255 170 85 108.2 96.51 14.29 98.64 25.46 86.15

59 G5 255 170 170 116.49 101.74 52.68 100.67 29.64 28.92

60 G6 255 170 255 136.03 115.28 142.32 105.63 36.51 -30.17

61 G7 255 255 0 139.3 164.4 13.3 120.91 -24.88 127.19

62 G8 255 255 85 143.59 170.47 22.62 122.57 -26.31 108.98

63 G9 255 255 170 151.99 175.54 62.58 123.93 -21.25 58.85

64 H1 255 255 255 171.92 189.87 152.32 127.64 -12.83 2.29

65 H2 0 0 15 0.33 0.53 0.37 4.76 -7.06 1.16

66 H3 0 0 30 0.4 0.64 0.39 5.81 -8.92 2.57

67 H4 0 0 51 0.41 0.58 0.78 5.27 -6.25 -5.55

68 H5 0 0 115 3.24 2.26 13.59 16.8 19.99 -53.1

69 H6 0 0 145 5.53 3.61 24.63 22.35 27.52 -67.56

70 H7 0 0 204 14.18 8.93 65.23 35.85 40.44 -95.55

71 H8 0 0 225 18.45 11.74 85.17 40.81 43.29 -104.2

72 H9 0 0 240 22.6 14.59 103.94 45.07 45.06 -110.73

73 I1 0 15 0 0.37 0.56 0.39 5.09 -6.9 1.46

74 I2 0 30 0 0.38 0.61 0.44 5.51 -8.26 1.17

75 I3 0 51 0 0.64 1.2 0.54 10.55 -19.8 7.94

76 I4 0 115 0 5.92 12.43 1.51 41.89 -52.27 47.13

77 I5 0 145 0 10.66 22.42 2.44 54.47 -63.8 59.66

78 I6 0 204 0 26.1 55.04 5.5 79.06 -86.3 82.8

79 I7 0 225 0 34.21 72.2 7.04 88.07 -94.61 91.37

80 I8 0 240 0 40.04 84.5 8.18 93.67 -99.68 96.5

81 I9 15 0 0 0.4 0.62 0.37 5.58 -7.79 2.69

82 J1 30 0 0 0.5 0.68 0.34 6.16 -6.23 4.19

83 J2 51 0 0 1.52 1.31 0.49 11.37 7.35 10.36

84 J3 115 0 0 9.08 5.9 1.06 29.15 32.84 31.02

85 J4 145 0 0 16.97 10.68 1.6 39.04 42.98 41.19

86 J5 204 0 0 41.46 25.56 2.79 57.62 60.07 62.22

87 J6 225 0 0 54.08 33.21 3.22 64.33 66.08 70.65

88 J7 240 0 0 62.96 38.57 3.35 68.44 69.8 76.85

89 J8 0 20 20 0.44 0.63 0.38 5.65 -6.67 2.48

90 J9 20 0 20 0.42 0.61 0.42 5.53 -6.99 1.63

91 K1 20 20 0 0.43 0.68 0.38 6.11 -8.84 3.31

92 K2 0 225 225 55.84 87.14 103.88 94.8 -60.81 -24.94

93 K3 225 0 225 75.59 46.38 87.41 73.79 74.02 -49.09

94 K4 225 225 0 95.22 115.5 10.56 105.71 -26.68 109.03

95 K5 20 20 20 0.5 0.68 0.48 6.16 -6.33 1.64

96 K6 51 51 51 2.44 3.06 2.39 20.27 -9.6 1.09

97 K7 128 128 128 26.33 29 23.22 60.78 -6.57 1.3

98 K8 204 204 204 94.15 103.76 82.41 101.44 -10.14 2.54

99 K9 225 225 225 122.29 134.74 106.92 112.12 -11.02 2.83

Table A.35: Device signals and corresponding radiometric measurements of the high-luminance display

(patch index: 51-99).
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A.5 Instruction for Colour Experiments

In an experiment trial, during the time allowed for the participant’s eye to adapt to the environment

lighting, observers were read this following instruction by a experimenter, adapted from [Kwak,

2003].

Instructions

Please sit comfortably and look at the test pattern. You will be shown a series of test

colours in a random order. Your task will be to tell me what lightness, colourfulness

and hue you see. You will enter corresponding numbers by using a keyboard. There is

no time limit for each test colour and you can take as long as required until you report

your estimations.

Lightness scaling Use the reference white as a standard, which has a lightness of 100,

and your imaginary black, which has a lightness of zero. Describe the test colour by

assigning a number, which is in the right relationship to the reference white and the

imaginary black. (The reference white is displayed in the test pattern.)

Colourfulness scaling Colourfulness is an attribute of a visual sensation according

to which an area appears to exhibit more or less of its hue. A neutral colour has no

colourfulness, represented by zero on your scale. You are asked to assign a reasonable

number to describe the colourfulness of the test colour. This is an open-ended scale

since no top limit is set. The reference colourfulness patch in the test pattern should be

remembered as 40 so that all subsequent test colours can be related to it.

Hue scaling There are four psychological primaries: red, yellow, green and blue. These

four colours can be arranged as points around a circle and lie at opposite ends of x and

y axes. You are asked to describe a hue as a proportion of two neighbouring primaries.

First, decide whether or not you perceive any hue at all. If not, please reply ‘Neutral’.

On the other hand if the test colour does not appear neutral then decide which of the

four primaries is predominant. Next decide whether or not you see a trace of any

other primary hue. If so, identify it. Finally, estimate the proportions in which the two

primaries stand, e.g. an orange colour may be 60% yellow and 40% red.
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A.6 Colour Appearance Data

This appendix provides the psychophysical experimental data which was used to develop our model.

The data comprises three main parts: (1) physical measurements of colour stimuli (absolute X Y Z

coordinates measured with a spectroradiometer; Y in [ cd/m2]), (2) perceptual attribute estimates

(averaged over six participants) of the stimuli in terms of lightness J 0, colourfulness M 0, and hue

quadrature H 0, and (3) colour appearance attributes predicted by our colour appearance model in

terms of lightness J , colourfulness M , hue quadrature H, brightness Q, chroma C , hue angle h, and

saturation s.

In each phase, 40 main colour patches were observed on a high-luminance display under differ-

ent viewing conditions (different peak luminance level, background, ambient surround, and colour

temperature, see Table A.36). Six observers who passed the Ishihara and City University vision

tests for normal colour vision participated in the experiments. Each participant completed a total

of 2,280 estimations (19 phases with 40 patches and 3 estimates each), which took about 10 hours

per participant. The averaged repeatability in terms of CV was 11.83% for lightness, 22.82% for

colourfulness, and 11.42% for hue. Note that our experimental results are compatible with the

LUTCHI data [Luo et al., 1991a].

The lightness attribute has a scale of 0–100 relative to the brightness of reference white. The

colourfulness attribute has an absolute scale of 0 to unlimited. The hue attribute varies from 0 to

400: redness (0) - yellowness (100) - greenness (200) - blueness (300) - redness (400); observers

were allowed to judge a hue as undefined (denoted as ‘N/A’ below) if the shown patch was too dark,

too bright, or neutral.

Phase Medium CCT Reference White (Abs.) La(10◦) Background (Abs.) Ambient

Number Type [K] X Y[ cd/m2] Z [ cd/m2] % X Y[ cd/m2] Z Luminance

1 LCD 5935 32.51 43.88 25.72 12.06 24.52% 8.64 10.76 7.66 dark

2 LCD 6265 93.68 122.90 84.06 31.26 21.81% 21.94 26.81 20.98 dark

3 LCD 6265 376.08 493.60 348.19 30.07 0.34% 1.22 1.68 1.23 dark

4 LCD 6265 396.71 521.00 371.57 144.29 23.82% 103.97 126.90 104.31 dark

5 LCD 6197 419.38 562.60 373.03 466.17 87.11% 366.89 490.10 326.54 dark

6 LCD 6197 800.51 1067.00 714.78 70.00 0.32% 2.43 3.37 2.46 dark

7 LCD 6197 800.22 1051.00 736.81 269.90 22.06% 189.58 231.80 183.53 dark

8 LCD 6390 1712.46 2176.00 1689.59 136.44 0.22% 3.59 4.76 4.12 dark

9 LCD 6392 1721.81 2189.00 1697.69 367.61 12.16% 229.77 266.20 234.15 dark

10 LCD 6391 1726.31 2196.00 1702.69 576.71 22.90% 422.04 502.90 427.31 dark

11 LCD 6387 1732.94 2205.00 1708.66 1204.03 55.06% 1012.64 1214.00 1010.70 dark

12 LCD 6388 1758.09 2241.00 1729.44 2009.94 94.87% 1667.67 2126.00 1636.72 dark

13 LCD 7941 995.40 1274.00 1293.24 312.49 21.16% 228.16 269.55 314.68 dark

14 LCD 1803 1063.72 1233.00 356.61 284.36 19.17% 217.84 236.35 73.20 dark

15 LCD 6391 1730.32 2201.40 1705.62 604.76 22.90% 432.93 533.92 429.98 average

16 Trans. 5823 6890.34 8519.00 5936.19 941.70 5.61% 408.02 477.60 256.97 dark

17 Trans. 5823 6849.58 8458.00 5911.69 2120.66 21.41% 1499.62 1811.00 1062.72 dark

18 Trans. 5921 13676.05 16860.00 12201.60 1860.80 5.49% 791.12 926.00 523.38 dark

19 Trans. 5937 13295.61 16400.00 11918.19 4183.52 21.81% 2963.80 3577.00 2194.24 dark

Table A.36: Summary of viewing conditions for all 19 phases.
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Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 0.61 0.56 0.30 8.67 12.44 0.25 1.00 27.35 -11.8 1.64 34.59 8.46 408.40

2 0.44 0.50 0.30 2.00 2.33 N/A 1.00 15.05 N/A 1.64 19.04 N/A 302.97

3 1.31 0.85 4.93 32.50 64.28 305.00 30.33 60.32 312.7 49.73 76.30 262.98 110.13

4 0.69 0.79 0.35 6.67 6.75 77.50 23.80 18.95 21.3 39.03 23.97 36.66 69.68

5 1.98 1.42 0.37 43.00 50.84 1.33 39.00 50.56 5.8 63.95 63.95 24.76 88.92

6 2.60 1.56 8.57 41.33 64.26 325.83 41.64 62.39 316.9 68.29 78.92 270.91 95.58

7 0.62 0.94 0.50 15.83 30.28 179.17 27.50 13.02 196.9 45.09 16.46 161.03 53.73

8 3.36 2.04 14.17 52.00 61.81 305.83 45.22 70.18 306.9 74.16 88.76 251.80 97.28

9 1.00 1.79 0.41 39.50 55.77 207.50 39.39 34.51 158.4 64.60 43.64 126.78 73.08

10 4.64 3.07 0.59 55.00 60.54 10.50 50.61 63.05 10.7 83.00 79.74 28.58 87.16

11 1.80 2.00 0.51 31.17 27.80 127.00 42.55 32.86 55.3 69.77 41.57 61.07 68.63

12 1.51 2.90 0.48 42.67 55.22 190.00 46.39 43.96 157.6 76.08 55.60 126.16 76.01

13 3.03 2.37 2.02 46.17 48.29 372.50 46.54 46.47 369.6 76.32 58.78 347.94 78.03

14 2.90 4.18 5.21 47.33 34.51 275.33 52.58 36.42 304.3 86.22 46.07 246.63 65.00

15 8.58 5.52 0.70 68.33 52.87 6.67 59.22 70.35 20.3 97.12 88.98 35.88 85.11

16 6.56 4.27 0.85 52.83 57.80 3.83 55.43 66.23 9.9 90.90 83.76 27.95 85.36

17 4.06 3.44 11.91 53.33 52.41 320.33 51.54 57.14 313.8 84.51 72.27 265.06 82.22

18 6.53 5.48 10.96 55.17 39.94 349.17 58.53 49.34 333.9 95.98 62.40 299.49 71.69

19 10.06 6.78 0.84 61.83 62.88 36.17 62.22 68.93 25.0 102.02 87.18 39.44 82.19

20 3.43 4.62 6.41 49.00 38.09 283.67 54.23 38.54 307.7 88.93 48.75 253.47 65.84

21 3.34 6.58 1.15 59.50 50.56 187.50 58.22 49.07 159.5 95.47 62.07 127.63 71.69

22 9.63 7.34 0.89 58.67 57.49 54.50 62.96 63.28 36.1 103.24 80.03 47.58 78.29

23 12.91 9.54 15.52 62.33 42.42 363.67 68.17 54.80 350.7 111.79 69.31 324.08 70.02

24 12.88 10.57 2.40 57.83 38.24 52.00 68.98 55.04 24.7 113.12 69.61 39.19 69.75

25 4.98 7.59 5.42 54.83 24.06 232.00 61.31 21.52 276.9 100.55 27.22 218.14 46.26

26 6.70 8.31 16.89 63.83 37.24 296.67 63.41 49.03 306.0 103.99 62.01 250.06 68.67

27 16.90 15.00 13.88 67.83 44.30 369.50 75.81 43.06 361.7 124.32 54.46 338.37 58.85

28 5.20 10.39 1.00 65.83 51.39 181.33 65.34 61.27 152.0 107.15 77.50 122.01 75.62

29 16.57 17.14 5.95 66.17 35.76 72.50 77.59 37.05 29.6 127.24 46.86 42.79 53.96

30 15.79 17.06 1.45 69.17 61.28 91.17 76.84 61.20 91.1 126.01 77.41 84.51 69.69

31 19.50 20.00 18.41 73.67 27.74 374.50 81.49 33.10 351.4 133.63 41.86 325.03 49.77

32 18.31 19.75 9.07 76.00 29.21 60.83 80.70 29.95 9.7 132.35 37.88 27.75 47.57

33 16.15 17.81 1.56 69.00 63.58 91.67 77.69 60.71 93.4 127.39 76.78 85.95 69.03

34 9.05 17.46 2.71 77.83 57.62 180.83 75.18 54.11 154.5 123.29 68.43 123.88 66.25

35 20.65 25.84 15.39 82.00 3.09 N/A 86.88 13.41 N/A 142.47 16.96 N/A 30.68

36 18.55 27.94 9.15 85.50 27.74 167.83 87.84 30.66 140.6 144.05 38.78 114.00 46.14

37 21.31 28.42 2.29 90.00 70.67 103.17 88.42 63.10 119.6 145.00 79.80 100.83 65.97

38 24.41 30.88 16.30 88.17 4.65 82.83 92.15 14.13 22.9 151.11 17.87 37.84 30.58

39 21.22 30.34 2.84 92.83 64.35 111.67 90.04 60.75 125.9 147.65 76.84 104.62 64.15

40 27.32 33.76 24.28 100.00 1.44 N/A 95.46 17.05 N/A 156.55 21.56 N/A 33.00

Table A.37: Physical measurements, perceptual estimates, and our model’s predictions (Phase 1).
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Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 2.03 1.79 0.99 10.83 17.88 9.00 18.87 32.42 -6.2 35.41 38.60 14.10 95.69

2 1.35 1.61 0.87 2.83 4.47 50.00 1.00 15.22 33.3 1.88 18.12 45.55 284.83

3 4.48 2.79 17.89 33.67 68.77 304.17 33.24 65.86 311.7 62.37 78.42 261.17 102.76

4 2.17 2.53 0.94 8.00 11.74 74.17 28.91 25.03 58.7 54.25 29.80 63.40 67.92

5 6.63 4.61 1.30 40.33 54.01 2.50 42.06 57.61 7.2 78.92 68.60 25.84 85.44

6 9.05 5.25 30.85 46.17 68.51 334.17 44.17 66.65 317.6 82.88 79.36 272.13 89.67

7 1.94 3.13 1.59 23.67 35.88 200.33 32.23 22.07 182.9 60.48 26.28 147.37 60.41

8 11.45 6.74 49.71 60.33 71.36 267.83 47.08 74.93 306.4 88.34 89.22 250.86 92.10

9 3.16 6.01 1.17 43.67 58.28 210.00 42.68 45.23 158.8 80.08 53.86 127.12 75.16

10 15.26 9.99 1.87 57.17 65.50 4.17 53.32 69.88 15.6 100.04 83.21 32.31 83.58

11 5.95 6.69 1.62 43.17 34.53 126.17 45.71 39.26 69.8 85.76 46.74 70.84 67.66

12 4.86 9.63 1.50 51.83 55.61 191.67 49.35 53.16 157.7 92.60 63.29 126.28 75.77

13 10.14 7.86 7.24 47.33 46.51 375.00 49.43 50.53 372.1 92.76 60.16 350.84 73.80

14 9.75 14.17 18.62 51.83 39.92 275.67 55.64 37.99 300.7 104.40 45.23 238.92 60.32

15 28.02 17.81 2.24 72.33 62.82 12.00 61.96 77.22 24.8 116.25 91.95 39.26 81.50

16 21.27 13.69 2.90 63.67 57.17 9.00 57.98 72.43 12.8 108.79 86.24 30.18 81.59

17 14.13 11.83 42.42 62.00 51.86 327.67 54.45 59.27 313.9 102.18 70.57 265.39 76.16

18 21.82 18.18 38.37 60.00 48.68 349.17 61.31 50.97 335.2 115.04 60.69 301.60 66.56

19 32.85 22.11 2.52 67.83 70.82 44.17 65.16 75.59 32.6 122.26 90.00 44.99 78.63

20 11.81 15.83 23.14 53.83 35.68 278.67 57.49 39.43 305.3 107.87 46.95 248.62 60.46

21 10.88 21.90 3.94 62.33 61.04 190.33 61.36 56.96 159.7 115.13 67.82 127.83 70.34

22 31.73 24.31 2.79 59.50 60.09 52.50 66.18 69.72 44.8 124.18 83.01 53.76 74.93

23 42.90 31.55 54.69 68.67 46.60 365.00 71.36 57.09 352.5 133.91 67.98 326.51 65.30

24 42.19 34.80 8.60 68.50 63.93 50.83 72.43 58.55 30.4 135.90 69.71 43.41 65.64

25 16.77 25.49 19.44 58.17 31.24 239.50 64.65 23.20 255.7 121.30 27.63 201.72 43.74

26 23.01 28.32 60.21 74.17 50.83 300.83 66.78 50.15 304.6 125.30 59.72 247.10 63.27

27 55.72 49.57 49.14 73.83 35.20 359.50 79.64 43.47 364.2 149.43 51.76 341.49 53.94

28 16.71 33.71 3.38 67.33 64.72 188.33 68.39 69.10 152.2 128.32 82.28 122.16 73.38

29 53.72 55.68 20.54 68.83 34.82 57.83 81.35 39.86 40.6 152.63 47.47 50.79 51.11

30 51.81 56.58 5.15 71.17 72.14 92.50 81.05 67.56 97.2 152.07 80.44 88.29 66.65

31 64.64 66.23 65.07 72.33 24.89 361.17 85.89 32.21 354.3 161.17 38.35 328.83 44.70

32 60.30 65.35 32.24 76.33 25.63 60.33 85.15 31.05 23.4 159.77 36.97 38.21 44.09

33 52.93 58.99 5.31 73.17 72.06 81.17 81.93 67.78 99.9 153.73 80.70 89.96 66.40

34 29.44 57.45 9.58 83.83 60.51 178.33 79.09 60.41 155.0 148.41 71.93 124.24 63.80

35 68.72 86.00 54.73 83.17 3.87 100.40 92.18 12.39 19.5 172.97 14.75 35.28 26.77

36 61.10 92.38 32.47 83.83 26.46 187.00 93.17 35.47 143.4 174.83 42.24 115.95 45.04

37 69.41 93.51 7.78 87.67 74.78 119.17 93.68 70.30 123.4 175.79 83.70 103.10 63.24

38 80.86 102.40 58.25 88.67 6.54 92.00 98.11 15.93 61.7 184.09 18.97 65.43 29.42

39 68.30 98.26 9.56 87.50 71.09 138.33 95.01 67.61 128.7 178.27 80.50 106.29 61.58

40 90.04 111.20 85.51 99.67 1.63 N/A 101.60 13.38 N/A 190.63 15.93 N/A 26.49

Table A.38: Physical measurements, perceptual estimates, and our model’s predictions (Phase 2).
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Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 3.98 3.11 1.23 28.71 59.45 12.00 26.80 49.78 -0.6 60.30 54.93 19.52 90.86

2 2.00 2.25 1.20 22.71 23.45 94.86 1.00 22.37 46.4 2.25 24.68 54.88 315.27

3 12.12 6.55 54.72 44.71 78.01 308.00 40.27 83.45 310.7 90.64 92.08 259.34 95.95

4 4.29 4.70 1.37 31.14 38.64 126.43 33.80 38.35 68.5 76.08 42.32 69.96 71.00

5 19.38 12.55 2.66 46.71 59.89 7.71 49.62 77.74 6.2 111.66 85.78 25.06 83.44

6 26.96 14.53 100.40 55.71 78.48 336.14 51.32 75.54 317.9 115.49 83.36 272.76 80.88

7 3.25 5.83 2.84 40.86 51.77 193.14 35.85 33.05 187.9 80.68 36.47 152.03 64.00

8 37.60 20.32 174.31 61.57 87.33 306.14 54.79 85.99 306.1 123.31 94.88 250.16 83.50

9 6.73 13.78 2.10 44.71 63.39 189.43 47.60 62.32 160.7 107.13 68.77 128.61 76.27

10 50.34 31.42 4.80 58.71 68.92 11.43 61.29 85.11 13.4 137.93 93.91 30.65 78.55

11 14.94 15.70 2.91 46.14 46.81 100.71 50.87 55.55 74.1 114.49 61.29 73.63 69.65

12 11.84 24.79 3.19 57.43 72.34 185.00 54.97 69.86 158.6 123.70 77.08 126.97 75.15

13 29.48 20.84 19.49 53.29 49.26 373.29 55.86 66.75 370.9 125.72 73.65 349.50 72.86

14 26.67 38.05 57.55 55.71 52.99 277.43 61.21 45.09 299.4 137.77 49.76 236.99 57.21

15 101.12 62.46 7.03 78.29 72.72 16.43 70.52 86.60 22.2 158.70 95.56 37.31 73.87

16 73.91 45.77 7.46 72.00 62.62 7.43 66.29 84.51 10.0 149.19 93.25 28.04 75.26

17 42.31 32.35 142.31 64.00 63.65 327.57 60.42 65.57 313.9 135.98 72.35 265.40 69.44

18 69.73 54.11 130.56 70.86 44.53 347.14 67.85 54.78 335.4 152.71 60.44 301.92 59.89

19 118.82 75.96 7.02 83.57 75.80 30.00 73.16 86.10 31.5 164.64 95.01 44.18 72.32

20 32.51 42.52 72.61 57.14 35.65 278.14 62.86 46.15 304.8 141.48 50.93 247.64 57.12

21 29.90 62.32 10.42 64.86 59.75 185.86 67.01 67.06 161.6 150.81 74.00 129.30 66.68

22 111.26 79.33 8.23 77.14 69.29 45.86 73.42 80.10 44.3 165.24 88.38 53.43 69.62

23 150.53 104.20 192.87 80.57 53.88 358.57 78.12 58.94 352.0 175.82 65.03 325.76 57.90

24 152.22 116.60 25.10 78.71 44.39 48.14 79.23 64.55 27.0 178.31 71.23 40.87 60.17

25 47.64 72.60 59.87 64.43 29.76 230.71 69.96 25.63 260.5 157.45 28.28 205.32 40.35

26 72.33 83.96 212.76 74.71 56.58 284.29 72.34 52.91 303.8 162.82 58.38 245.57 57.01

27 196.50 163.40 167.20 82.43 31.64 369.86 84.80 45.65 362.6 190.85 50.38 339.49 48.91

28 50.02 103.90 10.61 78.29 78.02 198.57 74.22 77.10 153.0 167.04 85.08 122.72 67.94

29 189.77 185.10 65.43 79.57 28.18 49.71 86.19 42.07 37.5 193.97 46.42 48.56 46.57

30 181.71 185.00 15.76 71.71 83.53 88.00 85.57 73.51 97.9 192.59 81.11 88.73 61.78

31 224.22 216.50 231.01 86.57 12.34 372.17 89.19 33.38 353.1 200.73 36.83 327.23 40.78

32 209.32 213.70 104.63 85.71 24.45 52.71 88.68 33.11 19.5 199.57 36.53 35.28 40.73

33 185.40 192.70 16.70 82.14 89.69 94.29 86.22 72.86 100.5 194.04 80.39 90.27 61.27

34 90.14 181.00 28.83 87.00 49.99 181.71 83.20 63.51 156.5 187.25 70.08 125.37 58.24

35 230.13 279.00 188.02 95.57 2.44 90.00 93.10 13.78 7.6 209.54 15.20 26.15 25.64

36 199.61 300.90 107.13 91.29 19.57 173.86 93.68 33.19 143.7 210.83 36.62 116.14 39.68

37 240.67 310.60 26.70 95.14 75.00 103.29 94.43 70.36 123.0 212.51 77.64 102.81 57.54

38 277.13 338.40 201.47 98.29 4.15 77.00 97.07 15.65 55.2 218.46 17.27 61.01 26.76

39 235.29 330.50 32.61 94.57 75.78 105.43 95.43 67.03 128.2 214.77 73.97 106.01 55.87

40 316.13 374.50 320.99 100.00 1.97 N/A 99.42 15.85 N/A 223.75 17.49 N/A 26.62

Table A.39: Physical measurements, perceptual estimates, and our model’s predictions (Phase 3).
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Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 9.16 7.98 4.02 15.57 38.10 6.71 19.04 36.37 3.6 43.15 40.02 22.97 91.81

2 6.06 7.32 3.85 6.71 6.87 66.00 1.00 17.39 22.0 2.27 19.13 37.19 276.97

3 20.51 12.82 85.04 36.43 80.24 301.86 33.32 71.67 305.6 75.53 78.86 249.17 97.41

4 10.82 12.83 4.38 19.00 31.57 129.14 31.77 29.66 57.6 72.00 32.64 62.62 64.19

5 30.53 20.90 6.19 39.57 55.90 7.43 42.47 63.33 13.8 96.25 69.68 30.91 81.11

6 41.56 24.10 142.99 48.71 78.74 330.14 44.41 71.71 312.5 100.67 78.90 262.70 84.40

7 9.07 15.38 8.09 25.29 49.74 195.00 33.98 26.48 187.7 77.01 29.14 151.81 58.64

8 50.87 30.70 224.51 58.86 74.69 299.57 47.01 80.76 300.4 106.56 88.86 238.43 87.06

9 14.56 28.62 5.81 43.86 64.39 195.00 43.65 49.87 158.2 98.93 54.87 126.62 71.00

10 66.86 42.69 8.51 57.57 79.69 5.29 52.99 76.76 23.6 120.09 84.46 38.37 79.95

11 27.09 30.92 7.31 36.71 41.42 119.00 46.27 43.46 70.1 104.87 47.82 71.00 64.38

12 22.76 46.24 7.43 48.71 60.89 192.29 50.47 58.49 156.4 114.38 64.36 125.28 71.51

13 47.16 36.61 36.23 45.14 51.02 369.43 50.14 54.64 374.5 113.65 60.12 353.64 69.34

14 45.42 66.68 89.77 54.71 43.16 262.00 56.50 41.17 300.2 128.06 45.30 237.85 56.70

15 117.67 73.41 9.99 79.71 78.48 9.71 61.10 84.14 35.4 138.49 92.58 47.02 77.95

16 92.49 58.18 13.58 66.14 68.11 7.00 57.60 79.41 23.6 130.54 87.38 38.39 78.00

17 64.20 55.26 192.04 59.43 59.16 323.14 55.04 62.71 309.7 124.75 69.00 257.34 70.90

18 101.07 85.40 179.74 59.00 57.92 354.57 62.23 54.08 336.9 141.05 59.51 304.20 61.92

19 135.23 90.72 10.80 76.43 87.41 34.29 64.15 81.68 44.8 145.39 89.87 53.77 74.95

20 52.89 71.18 106.59 53.86 38.63 294.29 57.71 42.35 303.9 130.80 46.59 245.78 56.90

21 48.97 99.74 20.43 64.00 70.25 188.71 61.93 60.07 157.9 140.36 66.09 126.45 65.42

22 134.40 104.00 12.86 67.29 78.35 47.14 65.80 74.57 51.9 149.15 82.05 58.72 70.71

23 186.12 138.80 247.22 65.43 73.81 358.86 71.40 60.80 355.6 161.82 66.90 330.64 61.30

24 177.17 148.90 43.04 68.29 54.41 44.86 72.07 61.04 36.5 163.34 67.16 47.81 61.13

25 76.86 116.30 94.50 50.14 33.23 221.43 65.30 25.30 263.0 148.02 27.84 207.27 41.35

26 100.83 126.80 267.11 75.29 46.65 296.00 66.99 53.57 302.3 151.84 58.94 242.32 59.40

27 234.65 212.30 222.34 74.00 44.30 380.71 79.27 45.86 367.4 179.68 50.46 345.39 50.52

28 75.81 154.20 17.66 71.14 83.62 186.00 69.24 73.25 151.2 156.92 80.60 121.44 68.32

29 229.05 242.10 101.05 70.00 31.80 57.86 81.44 40.56 39.4 184.60 44.62 49.92 46.87

30 215.15 239.60 23.68 78.43 91.76 89.29 80.54 72.22 99.1 182.55 79.46 89.42 62.90

31 271.71 281.80 287.69 76.71 36.49 374.29 85.47 34.11 356.9 193.72 37.53 332.31 41.96

32 252.87 277.50 150.11 75.14 24.60 54.71 84.73 31.98 19.0 192.05 35.19 34.92 40.81

33 219.63 249.40 24.63 74.71 84.26 91.43 81.40 72.28 101.1 184.50 79.52 90.58 62.59

34 128.48 250.80 49.00 85.00 72.98 184.57 79.34 62.62 153.5 179.84 68.90 123.12 59.01

35 284.65 356.70 242.66 86.57 5.59 78.33 91.16 12.67 -3.1 206.62 13.94 17.20 24.76

36 259.59 389.50 153.34 88.57 32.13 176.71 92.80 36.01 141.5 210.33 39.62 114.62 41.38

37 285.73 388.40 37.88 92.29 92.38 102.57 92.81 73.76 122.9 210.36 81.15 102.75 59.21

38 334.78 424.90 260.98 92.43 12.43 98.57 97.10 15.74 35.4 220.09 17.32 47.04 26.74

39 282.70 408.60 46.24 93.43 68.66 111.71 94.20 70.91 128.4 213.50 78.02 106.12 57.63

40 369.89 460.90 365.11 99.14 1.77 N/A 100.45 13.53 N/A 227.67 14.89 N/A 24.38

Table A.40: Physical measurements, perceptual estimates, and our model’s predictions (Phase 4).



A.6. Colour Appearance Data 225

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 14.89 16.22 9.01 9.83 15.28 6.67 18.85 20.23 2.0 43.16 22.17 21.73 68.47

2 12.06 15.74 8.90 3.67 3.16 31.25 10.11 9.88 62.0 23.15 10.83 65.63 65.34

3 25.48 20.64 85.85 31.50 58.73 300.83 29.50 55.28 314.9 67.54 60.58 267.12 90.47

4 16.32 20.73 9.20 15.00 17.32 109.17 27.44 17.86 68.8 62.83 19.58 70.15 53.32

5 35.58 28.81 10.75 36.00 38.44 7.50 37.02 43.51 4.4 84.77 47.68 23.61 71.64

6 46.06 31.81 141.97 35.83 62.00 339.50 39.15 60.83 319.8 89.63 66.66 276.14 82.39

7 14.52 23.07 12.53 18.83 24.46 202.50 29.15 17.42 188.4 66.73 19.09 152.56 51.10

8 55.27 38.40 221.08 53.00 60.07 300.83 41.77 69.44 310.7 95.64 76.10 259.32 85.21

9 20.22 36.53 10.59 40.67 45.20 189.17 38.08 33.30 162.9 87.17 36.49 130.27 61.80

10 71.85 50.93 13.17 49.17 60.73 1.67 46.96 59.00 8.7 107.50 64.66 27.00 74.09

11 32.85 39.25 11.94 29.67 26.00 100.50 40.67 30.27 67.9 93.10 33.18 69.56 57.02

12 28.17 53.75 12.23 48.33 54.98 194.17 44.29 41.14 161.1 101.41 45.09 128.91 63.70

13 51.71 44.18 39.47 39.17 42.09 374.50 44.01 41.17 369.7 100.77 45.12 348.04 63.92

14 49.94 73.59 90.45 49.50 27.44 275.67 49.98 35.08 302.3 114.41 38.44 242.42 55.37

15 122.11 81.54 14.72 59.33 58.98 6.67 54.68 69.46 14.5 125.18 76.12 31.45 74.49

16 97.09 66.34 18.08 53.83 55.17 1.67 51.30 64.02 6.0 117.44 70.16 24.87 73.83

17 68.03 62.18 189.32 50.50 55.52 336.33 48.77 56.98 316.1 111.65 62.44 269.49 71.44

18 104.13 92.00 177.24 53.33 49.39 346.67 55.51 50.08 334.0 127.08 54.88 299.69 62.78

19 140.51 99.33 15.44 66.33 56.42 23.33 57.69 68.80 21.9 132.08 75.40 37.12 72.17

20 58.77 80.35 110.11 52.33 33.29 279.00 51.60 37.47 307.1 118.13 41.06 252.23 56.32

21 53.88 106.80 24.09 59.00 46.59 188.33 55.15 48.19 163.4 126.26 52.81 130.67 61.78

22 138.44 111.50 17.32 60.83 49.50 52.00 59.08 62.70 33.3 135.26 68.71 45.51 68.09

23 188.69 145.60 243.26 67.00 51.97 N/A 64.52 57.85 N/A 147.72 63.40 N/A 62.58

24 180.66 156.20 45.98 61.50 44.48 56.50 65.14 55.53 21.0 149.14 60.85 36.44 61.02

25 80.60 122.60 94.44 57.33 23.51 240.00 58.34 22.25 268.2 133.57 24.38 211.22 40.81

26 103.80 132.70 260.87 63.00 38.39 294.83 60.13 51.38 306.7 137.66 56.31 251.36 61.10

27 236.88 219.00 218.80 69.50 37.34 369.67 72.33 45.19 360.7 165.60 49.52 337.12 52.24

28 79.58 159.60 21.22 67.00 55.48 180.00 62.10 60.22 154.9 142.18 65.99 124.18 65.08

29 231.19 248.20 101.06 64.00 27.21 58.17 74.42 39.09 31.1 170.39 42.84 43.93 47.90

30 218.04 245.90 27.47 62.50 60.27 86.67 73.61 62.26 87.9 168.53 68.23 82.52 60.78

31 273.64 288.50 282.17 72.00 38.28 363.67 78.74 35.55 351.0 180.27 38.95 324.41 44.41

32 254.64 283.40 148.32 68.83 30.49 60.67 77.82 31.78 13.1 178.16 34.83 30.44 42.24

33 222.32 255.50 28.02 64.83 59.71 103.67 74.47 62.67 91.1 170.50 68.68 84.50 60.63

34 131.98 256.40 50.96 74.50 50.20 176.67 72.23 56.40 158.0 165.37 61.80 126.52 58.40

35 290.17 368.20 240.55 77.50 9.37 55.60 85.22 13.45 -10.0 195.11 14.74 10.26 26.25

36 262.18 396.30 151.46 84.50 21.22 173.67 86.52 34.78 142.9 198.09 38.12 115.59 41.90

37 288.47 395.50 41.19 88.17 65.07 99.67 86.72 66.68 118.3 198.53 73.07 100.09 57.96

38 336.41 431.80 255.25 84.67 13.81 68.40 91.41 15.60 38.2 209.27 17.09 49.04 27.30

39 290.00 422.40 49.36 85.67 46.69 115.83 88.85 65.38 125.3 203.42 71.64 104.22 56.69

40 371.86 468.30 357.84 97.00 5.89 361.60 95.41 16.82 342.5 218.44 18.43 312.49 27.75

Table A.41: Physical measurements, perceptual estimates, and our model’s predictions (Phase 5).



A.6. Colour Appearance Data 226

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 15.20 11.17 3.08 26.86 64.01 7.57 36.21 62.39 2.5 90.14 66.15 22.13 83.19

2 8.93 10.66 3.32 23.29 27.38 95.00 33.34 35.08 55.8 82.99 37.20 61.37 65.02

3 37.50 21.34 169.15 46.14 76.47 304.29 45.30 87.99 310.4 112.78 93.30 258.58 88.33

4 19.32 22.96 4.60 32.00 45.66 91.00 44.83 49.63 71.7 111.59 52.63 72.05 66.69

5 60.24 38.53 7.29 50.86 69.41 14.43 53.44 83.98 8.2 133.03 89.05 26.64 79.45

6 80.85 44.77 282.50 53.00 78.11 332.86 55.47 75.82 318.0 138.08 80.40 272.94 74.10

7 15.05 28.34 12.34 37.57 52.78 207.57 46.51 40.25 186.7 115.78 42.68 150.93 58.96

8 97.79 58.54 442.85 61.86 82.53 302.14 57.90 86.79 305.8 144.14 92.03 249.49 77.60

9 27.57 58.63 7.38 49.14 84.07 190.00 55.43 72.07 160.8 138.00 76.42 128.66 72.27

10 136.63 84.80 12.76 67.71 66.28 10.86 63.64 88.80 14.6 158.43 94.15 31.52 74.87

11 56.31 64.76 10.90 49.86 42.75 111.43 58.17 59.93 76.9 144.79 63.55 75.47 64.34

12 44.64 95.72 10.66 53.86 76.70 186.29 61.72 76.94 158.8 153.64 81.58 127.12 70.77

13 96.36 74.20 70.82 57.71 53.88 376.00 61.41 62.77 372.1 152.87 66.55 350.93 64.08

14 91.58 139.00 180.29 58.57 56.73 279.86 67.62 43.36 296.3 168.34 45.98 234.30 50.75

15 240.78 148.10 15.66 80.14 70.87 19.14 71.31 90.51 24.2 177.51 95.97 38.81 71.40

16 188.73 116.40 22.76 78.86 74.39 15.86 68.02 86.36 11.5 169.33 91.58 29.15 71.42

17 128.63 113.40 379.68 60.29 57.98 326.00 66.14 60.88 313.7 164.65 64.55 264.93 60.81

18 206.42 177.80 355.38 68.00 62.94 350.00 73.05 50.49 335.7 181.85 53.53 302.27 52.69

19 279.91 187.80 17.06 83.00 78.74 33.43 74.45 86.89 33.2 185.33 92.13 45.43 68.47

20 110.76 153.60 218.66 59.71 43.45 277.00 69.27 42.69 303.7 172.44 45.26 245.23 49.76

21 100.13 209.10 39.16 68.00 67.01 189.71 72.70 64.54 162.0 180.99 68.44 129.60 59.72

22 276.80 216.10 21.50 73.71 61.72 57.14 76.04 79.50 46.5 189.29 84.30 54.93 64.81

23 380.63 288.30 486.59 83.00 55.65 356.86 81.34 54.67 352.9 202.47 57.97 326.96 51.96

24 362.81 309.20 84.16 82.14 54.70 49.00 81.76 56.89 29.2 203.53 60.33 42.52 52.87

25 158.12 243.60 187.83 64.43 36.95 241.71 75.93 24.64 253.1 189.02 26.13 199.84 36.10

26 202.69 263.80 527.10 74.57 50.48 302.29 77.39 49.16 303.2 192.64 52.13 244.20 50.52

27 479.49 441.70 438.30 82.86 36.43 369.86 88.01 39.71 364.0 219.10 42.10 341.22 42.57

28 155.84 323.00 31.27 81.29 83.74 186.71 79.32 78.74 153.1 197.46 83.49 122.85 63.15

29 468.16 502.30 198.77 83.71 34.57 61.71 89.66 35.26 41.2 223.18 37.39 51.19 39.75

30 440.76 497.70 43.19 80.14 99.45 92.00 88.76 73.67 99.1 220.96 78.11 89.42 57.74

31 555.70 586.10 565.95 89.43 23.80 362.43 92.90 28.61 354.4 231.26 30.33 329.00 35.17

32 517.18 575.70 297.02 89.43 24.11 52.57 92.24 26.90 23.8 229.63 28.52 38.50 34.22

33 450.83 518.60 45.04 82.57 88.78 95.29 89.47 73.41 101.6 222.73 77.84 90.81 57.41

34 261.57 517.90 94.47 87.43 44.58 186.14 87.83 59.01 156.7 218.63 62.57 125.53 51.95

35 587.85 747.40 481.91 97.43 3.38 70.00 97.17 10.19 26.5 241.90 10.81 40.50 20.53

36 531.05 804.10 301.86 93.57 27.05 178.29 97.95 30.15 144.3 243.82 31.97 116.55 35.17

37 582.80 801.40 70.25 91.86 77.91 99.57 97.71 70.64 123.6 243.22 74.90 103.20 53.89

38 682.66 877.20 511.94 97.86 3.08 82.40 100.78 12.47 64.6 250.87 13.22 67.36 22.30

39 587.93 856.40 91.54 96.00 70.57 110.00 99.05 65.36 128.6 246.58 69.30 106.28 51.48

40 747.91 946.50 712.76 99.86 2.12 N/A 102.70 11.16 N/A 255.65 11.83 N/A 20.89

Table A.42: Physical measurements, perceptual estimates, and our model’s predictions (Phase 6).



A.6. Colour Appearance Data 227

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 18.47 15.90 7.26 19.29 21.64 8.43 21.03 39.43 10.1 52.25 41.84 28.11 86.87

2 12.62 15.32 7.36 8.14 8.97 81.67 6.46 19.97 69.9 16.04 21.19 70.87 111.57

3 40.05 25.76 165.02 36.86 87.75 300.86 34.11 74.54 303.8 84.75 79.10 245.57 93.78

4 21.82 26.05 8.53 18.29 18.92 120.71 32.77 31.58 84.3 81.42 33.51 80.23 62.28

5 62.15 42.48 11.43 42.71 63.50 8.57 43.18 66.98 15.2 107.28 71.07 32.04 79.01

6 81.19 47.98 274.36 52.14 75.84 329.43 44.87 74.09 314.2 111.47 78.62 265.90 81.53

7 18.14 31.33 15.63 27.29 37.83 197.29 34.92 29.25 185.7 86.77 31.04 149.91 58.07

8 99.06 61.58 434.33 63.43 87.47 301.43 47.54 83.63 300.0 118.10 88.74 237.54 84.15

9 29.71 59.26 11.17 44.57 72.48 195.14 44.59 53.89 156.7 110.79 57.19 125.54 69.75

10 136.99 87.83 16.74 67.14 82.87 0.86 53.76 80.19 22.8 133.57 85.10 37.79 77.48

11 57.26 65.64 14.54 41.29 40.55 118.57 47.55 46.78 87.2 118.13 49.64 82.06 62.93

12 46.04 94.62 14.35 54.14 72.20 194.43 51.18 62.40 155.0 127.16 66.21 124.20 70.05

13 93.91 73.67 68.92 57.29 55.51 370.29 50.62 56.35 370.7 125.77 59.79 349.22 66.93

14 90.40 135.60 174.35 53.14 46.84 259.71 57.12 42.53 294.6 141.90 45.13 232.86 54.75

15 241.14 150.90 18.90 89.14 91.10 11.14 61.85 87.89 35.0 153.67 93.26 46.77 75.63

16 187.31 118.20 25.95 72.00 83.08 5.43 58.18 82.79 16.9 144.54 87.86 33.35 75.68

17 127.49 112.60 372.54 61.43 63.47 324.29 55.71 64.28 310.7 138.40 68.21 259.20 68.15

18 201.15 173.00 345.78 61.57 61.43 343.57 62.78 55.04 335.6 155.97 58.41 302.14 59.41

19 281.05 189.70 21.72 79.71 88.22 35.00 65.18 84.94 48.1 161.93 90.13 56.06 72.42

20 108.00 148.50 211.22 56.57 49.82 271.43 58.71 43.30 302.6 145.86 45.95 243.01 54.49

21 98.40 202.50 40.18 72.43 72.75 189.00 62.50 63.26 159.4 155.28 67.13 127.60 63.83

22 275.22 213.80 24.93 76.86 96.82 47.14 66.57 77.92 61.1 165.39 82.68 65.03 68.64

23 374.15 281.80 475.78 75.71 62.69 365.00 71.98 62.37 352.8 178.82 66.19 326.91 59.06

24 360.18 303.50 83.12 75.29 52.10 43.57 72.70 63.52 33.2 180.61 67.40 45.46 59.30

25 153.28 234.80 181.96 55.29 38.79 236.71 65.79 26.51 261.7 163.45 28.13 206.24 40.27

26 197.16 253.40 514.03 74.71 53.47 298.29 67.31 55.16 301.2 167.22 58.54 240.00 57.44

27 472.12 429.70 428.10 75.57 47.73 367.57 79.76 46.85 362.3 198.16 49.71 339.12 48.62

28 150.99 309.70 33.72 84.00 84.56 188.71 69.60 77.09 150.0 172.91 81.80 120.57 66.77

29 463.43 491.60 194.92 76.43 40.24 55.71 81.98 42.41 41.1 203.66 45.01 51.12 45.64

30 436.86 486.90 45.97 76.14 92.39 91.00 81.09 75.60 108.4 201.46 80.23 94.46 61.26

31 549.70 574.80 560.14 83.29 32.51 360.29 86.11 34.24 352.8 213.93 36.33 326.84 40.00

32 506.39 556.30 286.24 76.14 34.68 52.14 84.93 33.60 19.4 211.01 35.66 35.24 39.91

33 445.04 505.00 47.59 80.29 96.37 94.57 81.87 75.68 110.4 203.39 80.31 95.57 61.00

34 255.79 503.90 94.37 89.00 66.75 187.29 79.63 65.74 154.5 197.83 69.76 123.88 57.65

35 579.74 732.10 476.38 88.00 7.35 70.86 91.96 13.11 3.2 228.46 13.91 22.66 23.96

36 519.82 785.10 296.01 90.57 32.00 173.71 92.99 38.22 143.2 231.02 40.55 115.78 40.67

37 572.08 778.80 71.85 92.00 88.34 115.86 92.82 77.30 126.4 230.61 82.02 104.89 57.90

38 666.43 849.30 498.26 92.86 6.37 88.33 96.93 17.41 52.3 240.81 18.47 58.99 26.89

39 578.88 837.90 92.68 94.00 78.35 103.57 94.95 73.53 129.8 235.90 78.03 107.03 55.83

40 741.05 930.00 711.74 99.43 2.60 388.33 100.53 12.62 346.5 249.77 13.39 318.26 22.48

Table A.43: Physical measurements, perceptual estimates, and our model’s predictions (Phase 7).



A.6. Colour Appearance Data 228

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 26.96 19.66 6.83 32.17 75.63 16.67 34.22 62.28 1.3 93.51 63.73 21.18 81.61

2 15.28 17.79 7.17 28.17 41.67 119.17 30.06 32.67 48.2 82.13 33.44 56.17 63.07

3 69.17 38.91 315.77 46.17 83.51 304.67 43.14 89.73 310.8 117.89 91.82 259.51 87.24

4 32.56 37.24 9.03 38.00 59.22 122.00 42.26 49.44 67.9 115.47 50.60 69.57 65.44

5 110.87 69.29 14.86 54.17 79.89 16.83 52.23 87.45 7.6 142.73 89.49 26.12 78.27

6 150.90 82.11 546.02 57.33 75.05 337.50 53.66 78.67 318.4 146.63 80.51 273.57 73.25

7 25.41 46.37 23.81 37.17 58.34 204.17 44.04 42.13 190.2 120.35 43.12 154.25 59.17

8 194.29 111.30 904.19 59.83 85.83 318.33 56.38 90.85 305.9 154.06 92.98 249.82 76.79

9 45.04 94.48 14.53 49.33 79.65 191.67 52.89 73.70 163.1 144.52 75.43 130.43 71.41

10 266.28 160.80 26.01 67.83 79.34 18.00 63.03 93.71 13.9 172.24 95.91 31.03 73.76

11 97.35 106.80 20.31 49.83 56.45 123.00 55.93 62.47 72.9 152.83 63.93 72.82 63.93

12 73.59 156.40 20.82 53.67 77.93 190.83 59.25 79.75 161.3 161.90 81.61 129.00 70.18

13 173.95 127.80 127.11 53.83 53.38 376.50 59.56 67.31 374.3 162.74 68.89 353.37 64.31

14 157.95 231.40 337.18 55.50 52.65 273.33 65.04 46.31 294.3 177.72 47.40 232.54 51.05

15 506.80 303.00 34.45 80.50 94.61 27.50 71.68 95.39 22.7 195.88 97.63 37.66 69.79

16 381.79 229.10 44.99 72.67 73.38 15.00 67.85 91.63 11.9 185.39 93.77 29.47 70.30

17 238.64 196.90 757.07 67.17 57.00 319.33 63.90 64.77 313.6 174.61 66.29 264.74 60.91

18 382.49 310.00 698.89 73.17 55.02 347.50 70.93 54.07 336.8 193.81 55.34 304.09 52.82

19 597.45 381.00 37.28 78.33 86.80 34.67 74.78 92.67 31.6 204.34 94.84 44.30 67.34

20 192.48 256.90 412.99 57.17 51.13 288.17 66.68 45.45 303.0 182.20 46.51 243.82 49.95

21 169.12 351.40 72.06 61.00 69.89 185.83 70.24 70.29 164.0 191.93 71.93 131.15 60.52

22 573.77 417.30 45.18 70.67 83.39 60.83 75.70 85.55 42.6 206.86 87.55 52.19 64.31

23 776.34 550.20 1004.81 79.67 59.94 362.50 80.46 59.96 355.3 219.87 61.36 330.25 52.22

24 761.52 596.70 156.64 83.00 62.71 47.17 81.32 65.24 28.1 222.22 66.77 41.71 54.18

25 274.64 414.30 351.75 66.33 41.15 246.67 73.42 27.88 249.3 200.61 28.53 197.05 37.28

26 381.07 461.60 1102.55 77.00 66.00 298.83 75.06 53.85 302.8 205.09 55.11 243.53 51.24

27 985.09 836.70 885.98 85.17 58.61 375.33 87.02 45.13 367.7 237.77 46.19 345.77 43.57

28 269.18 556.10 62.21 73.17 86.53 180.00 76.97 83.54 155.2 210.34 85.49 124.37 63.02

29 950.59 939.70 377.88 78.83 48.02 64.17 88.46 42.28 37.6 241.73 43.27 48.62 41.82

30 901.72 933.90 91.14 83.00 88.81 97.00 87.75 77.98 92.2 239.77 79.80 85.21 57.03

31 1126.00 1099.00 1192.29 88.83 32.11 382.83 91.51 32.42 357.8 250.05 33.18 333.46 36.01

32 1043.65 1076.00 576.42 84.83 38.30 49.83 90.91 33.04 22.4 248.40 33.81 37.47 36.47

33 920.98 972.70 95.48 82.83 89.43 90.33 88.42 77.55 94.9 241.62 79.37 86.85 56.65

34 467.24 921.90 183.53 81.83 64.72 181.33 85.60 64.77 158.6 233.91 66.28 126.94 52.62

35 1157.77 1394.00 989.90 96.50 5.00 63.67 95.45 13.32 19.6 260.83 13.63 35.35 22.59

36 1003.61 1486.00 592.74 92.67 37.07 170.83 95.92 35.08 144.6 262.12 35.91 116.79 36.59

37 1175.48 1518.00 151.34 92.50 87.71 118.33 96.47 74.44 120.3 263.60 76.18 101.26 53.14

38 1365.29 1658.00 1053.42 97.83 4.88 80.00 99.20 16.33 53.0 271.08 16.71 59.48 24.54

39 1164.67 1619.00 189.70 91.67 80.02 103.67 97.63 70.04 127.2 266.79 71.68 105.39 51.24

40 1541.92 1824.00 1635.45 100.00 3.71 2.50 101.47 13.81 345.9 277.28 14.14 317.42 22.32

Table A.44: Physical measurements, perceptual estimates, and our model’s predictions (Phase 8).



A.6. Colour Appearance Data 229

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 32.10 25.53 11.73 29.17 52.39 27.67 22.34 47.01 8.3 61.10 48.09 26.66 87.71

2 20.32 23.68 12.25 18.83 22.08 144.50 1.00 22.63 68.2 2.73 23.15 69.79 287.68

3 73.89 44.56 320.57 47.33 96.64 303.33 34.72 80.89 304.6 94.94 82.75 247.15 92.30

4 37.54 43.11 14.00 28.00 48.33 128.67 33.58 36.82 81.9 91.82 37.67 78.65 63.33

5 116.75 75.50 19.71 51.67 76.07 9.67 44.63 76.24 15.0 122.05 78.00 31.87 79.04

6 156.41 88.25 552.54 54.17 80.61 337.83 46.07 78.40 314.9 125.99 80.21 267.11 78.89

7 30.34 52.27 28.84 39.83 63.45 195.33 35.62 33.40 188.4 97.40 34.17 152.57 58.56

8 200.54 118.90 910.13 63.33 87.69 317.00 49.09 89.09 300.0 134.24 91.15 237.60 81.47

9 50.03 100.70 19.43 54.67 80.99 190.00 45.21 60.63 159.6 123.63 62.04 127.69 70.03

10 270.63 166.10 30.76 64.50 86.03 9.67 55.61 88.94 23.7 152.06 91.00 38.48 76.48

11 102.81 113.10 25.55 50.00 57.01 128.33 48.36 52.57 84.6 132.25 53.79 80.42 63.05

12 78.53 162.30 26.11 56.50 78.77 189.50 51.71 68.82 157.5 141.40 70.41 126.12 69.76

13 180.15 134.60 133.17 55.50 53.13 372.50 52.09 63.05 374.5 142.44 64.51 353.61 66.53

14 162.87 238.30 340.50 57.33 43.58 277.00 57.63 46.11 290.3 157.60 47.17 229.13 54.09

15 512.09 309.10 40.05 80.83 94.49 24.50 64.60 95.18 36.4 176.65 97.38 47.78 73.40

16 385.79 234.10 49.54 75.50 78.92 9.83 60.52 90.85 20.3 165.50 92.94 35.89 74.09

17 244.90 204.00 764.67 62.17 54.20 322.00 56.54 67.89 310.3 154.61 69.46 258.53 66.26

18 389.97 318.40 706.11 65.50 56.78 357.50 63.75 58.00 337.6 174.33 59.34 305.17 57.68

19 601.81 386.60 42.80 84.17 94.76 40.33 67.82 92.93 47.7 185.47 95.07 55.76 70.78

20 199.16 265.40 420.99 52.50 38.42 284.17 59.39 46.38 301.0 162.42 47.46 239.60 53.44

21 174.30 357.80 77.13 66.67 69.88 188.83 62.96 68.28 161.1 172.16 69.86 128.86 62.98

22 577.72 422.50 49.99 72.50 85.50 46.17 68.74 85.47 58.1 187.99 87.45 62.97 67.43

23 781.73 557.10 1010.82 80.17 75.93 365.83 73.79 66.37 356.6 201.78 67.90 331.84 57.35

24 770.86 606.60 164.88 77.50 58.56 47.50 74.88 70.19 36.2 204.76 71.82 47.65 58.55

25 279.60 420.30 356.39 60.17 40.90 232.50 66.21 29.17 248.2 181.07 29.85 196.25 40.14

26 386.74 469.70 1104.73 75.17 57.75 295.00 68.04 58.76 300.3 186.08 60.11 238.17 56.19

27 991.40 844.00 894.23 81.00 54.22 380.83 81.13 51.25 368.2 221.88 52.44 346.29 48.06

28 272.45 559.00 66.25 76.67 95.12 N/A 69.96 82.51 N/A 191.31 84.42 N/A 65.67

29 957.74 948.80 386.90 76.17 48.42 55.83 82.87 47.47 42.9 226.63 48.56 52.39 45.76

30 909.49 942.80 95.64 79.00 84.88 87.00 82.16 80.19 103.1 224.68 82.04 91.63 59.74

31 1134.49 1109.00 1201.68 82.83 42.70 382.50 86.50 37.73 358.3 236.56 38.60 334.09 39.93

32 1054.31 1089.00 588.07 82.33 47.62 70.83 85.84 37.87 25.0 234.75 38.74 39.42 40.16

33 926.32 979.50 100.94 78.00 91.94 106.67 82.90 79.75 105.3 226.72 81.59 92.81 59.31

34 471.99 928.90 186.70 82.83 70.23 180.00 79.53 69.62 156.1 217.49 71.23 125.10 56.58

35 1164.59 1403.00 996.03 89.17 7.83 51.17 91.39 15.68 20.9 249.93 16.04 36.35 25.05

36 1014.08 1499.00 603.34 84.83 42.73 156.17 92.09 40.12 144.5 251.83 41.04 116.67 39.91

37 1176.79 1519.00 153.58 91.33 83.09 102.00 92.73 80.09 124.6 253.58 81.94 103.79 56.20

38 1372.22 1668.00 1062.09 92.67 9.02 101.00 96.36 19.27 55.7 263.52 19.72 61.32 27.04

39 1170.06 1626.00 195.66 93.83 82.02 105.67 94.35 76.04 129.3 258.01 77.79 106.72 54.29

40 1553.40 1840.00 1643.56 99.50 3.35 355.00 99.62 16.55 345.7 272.44 16.93 317.12 24.65

Table A.45: Physical measurements, perceptual estimates, and our model’s predictions (Phase 9).



A.6. Colour Appearance Data 230

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 36.36 30.91 16.09 19.00 22.33 19.43 14.64 39.51 3.0 40.06 40.42 22.51 99.32

2 24.46 28.85 16.45 7.86 8.24 81.00 1.00 18.58 52.7 2.74 19.00 59.28 260.57

3 78.02 49.80 324.49 37.00 81.31 301.86 31.38 74.99 308.9 85.86 76.71 255.80 93.46

4 42.02 48.66 18.49 17.00 19.68 120.00 30.18 31.11 72.1 82.56 31.83 72.35 61.39

5 120.75 80.69 23.88 47.86 64.99 6.43 41.59 68.94 9.6 113.79 70.52 27.68 77.84

6 160.77 93.70 557.49 54.29 77.22 325.57 43.09 75.81 317.4 117.90 77.55 271.76 80.19

7 34.72 57.82 33.30 24.29 40.71 198.29 32.33 29.07 189.6 88.45 29.73 153.65 57.33

8 204.71 123.70 916.05 72.29 93.24 302.29 46.09 86.34 304.1 126.10 88.32 246.08 82.75

9 54.39 106.30 23.67 46.86 66.75 194.00 42.21 53.68 162.0 115.48 54.91 129.58 68.18

10 276.38 172.30 35.18 65.14 80.75 4.86 52.74 83.96 16.6 144.29 85.89 33.12 76.28

11 107.70 119.10 29.99 45.86 38.79 109.29 45.44 47.15 76.4 124.30 48.23 75.12 61.59

12 82.91 168.10 30.33 55.14 72.14 192.71 48.75 62.46 160.1 133.38 63.89 128.13 68.43

13 184.94 140.30 137.80 52.14 50.83 371.57 49.13 59.02 374.3 134.41 60.37 353.41 66.27

14 167.62 244.20 345.62 55.00 52.80 270.00 54.67 44.46 292.7 149.58 45.48 231.22 54.52

15 516.69 314.30 44.01 83.00 91.86 13.00 61.70 92.38 26.4 168.81 94.50 40.48 73.98

16 392.10 240.90 54.89 77.14 91.05 5.43 57.68 87.27 14.5 157.80 89.27 31.45 74.37

17 249.67 209.80 771.03 66.29 64.57 310.71 53.60 67.24 312.6 146.63 68.79 262.88 67.72

18 394.28 323.40 711.39 63.00 62.43 342.57 60.77 58.05 337.1 166.25 59.38 304.49 59.09

19 607.33 392.60 47.01 85.00 101.32 38.29 64.99 90.55 36.2 177.80 92.63 47.62 71.36

20 203.55 270.80 425.92 60.14 46.52 279.57 56.41 45.30 302.3 154.33 46.34 242.39 54.18

21 179.38 364.90 81.62 62.43 69.54 190.43 60.06 65.17 163.1 164.31 66.67 130.45 62.98

22 583.19 428.50 53.70 79.29 93.64 50.57 65.90 83.17 47.1 180.29 85.08 55.41 67.92

23 790.41 565.60 1020.46 79.29 63.02 358.86 71.05 67.36 355.7 194.39 68.91 330.75 58.87

24 773.39 611.10 168.50 79.00 73.20 51.43 72.06 70.43 30.4 197.14 72.05 43.36 59.77

25 285.66 428.00 363.07 60.71 41.95 237.86 63.34 28.70 248.7 173.29 29.36 196.63 40.69

26 390.95 475.50 1109.04 77.86 69.25 298.29 65.13 59.35 302.0 178.19 60.71 241.75 57.71

27 995.20 849.50 899.16 78.29 55.88 370.43 78.53 52.62 367.9 214.84 53.82 345.93 49.49

28 278.72 568.00 72.23 74.00 72.94 187.14 67.19 78.95 N/A 183.81 80.77 N/A 65.54

29 963.83 956.20 392.42 76.71 44.94 59.29 80.40 48.61 39.2 219.97 49.73 49.80 47.01

30 912.69 946.80 100.76 77.14 101.34 89.00 79.64 78.45 96.0 217.87 80.25 87.56 60.01

31 1140.21 1117.00 1207.43 81.43 46.06 365.29 84.24 39.19 357.9 230.46 40.09 333.64 41.24

32 1059.86 1097.00 593.89 79.00 40.18 48.00 83.54 39.14 23.0 228.54 40.04 37.94 41.38

33 931.38 986.20 105.40 79.57 96.27 91.43 80.47 78.33 98.2 220.16 80.13 88.91 59.65

34 479.58 939.80 194.29 84.86 75.31 199.29 77.00 69.18 157.7 210.67 70.77 126.24 57.31

35 1172.12 1413.00 1004.82 88.57 8.15 76.43 89.54 16.37 20.4 244.96 16.74 35.94 25.85

36 1021.02 1508.00 608.72 91.57 32.91 167.43 90.29 41.50 144.7 247.00 42.46 116.82 40.99

37 1186.78 1531.00 162.75 91.43 83.53 101.86 91.14 79.41 122.0 249.34 81.23 102.27 56.43

38 1377.69 1674.00 1069.43 91.86 10.09 88.86 94.95 20.23 54.7 259.76 20.69 60.63 27.90

39 1173.43 1632.00 195.67 93.86 92.63 122.86 92.76 77.12 127.9 253.78 78.89 105.82 55.13

40 1559.29 1849.00 1647.77 100.00 2.48 362.50 98.69 17.48 345.8 269.99 17.89 317.23 25.45

Table A.46: Physical measurements, perceptual estimates, and our model’s predictions (Phase 10).



A.6. Colour Appearance Data 231

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 49.58 47.11 29.37 14.83 23.00 4.17 8.98 28.80 -2.2 24.59 29.45 18.07 108.23

2 37.73 45.13 29.66 6.17 3.68 133.33 1.00 13.14 34.4 2.74 13.44 46.29 219.13

3 91.19 65.99 337.87 39.00 72.28 320.83 28.31 63.67 313.9 77.50 65.12 265.41 90.64

4 54.88 64.50 31.39 12.83 21.77 132.83 26.76 22.68 59.6 73.26 23.19 64.01 55.63

5 134.07 96.98 37.30 42.00 52.69 12.33 38.01 55.75 4.0 104.05 57.02 23.29 73.20

6 174.42 110.20 571.64 44.17 66.81 325.33 39.52 68.58 320.1 108.17 70.14 276.61 79.62

7 47.75 73.75 46.27 20.83 30.61 206.67 28.90 21.53 190.9 79.12 22.02 154.95 52.16

8 216.29 138.90 926.17 60.50 86.00 300.83 42.30 78.78 309.0 115.80 80.57 255.86 82.48

9 67.25 121.90 36.76 45.17 58.39 198.33 38.46 41.46 164.8 105.27 42.41 131.85 62.76

10 288.80 188.00 48.19 53.67 68.32 7.50 48.82 72.76 9.7 133.65 74.41 27.75 73.78

11 119.97 134.20 43.00 39.33 37.62 135.67 41.54 37.39 66.0 113.71 38.24 68.27 57.34

12 96.10 184.40 43.07 53.83 66.32 192.83 44.91 50.62 162.9 122.93 51.78 130.30 64.17

13 197.85 156.30 150.70 51.00 53.14 367.17 45.24 50.41 374.1 123.83 51.55 353.22 63.80

14 180.39 260.10 357.36 47.67 50.74 271.67 50.66 39.84 296.7 138.67 40.74 234.65 53.60

15 529.04 330.10 56.79 80.17 86.06 4.50 57.72 83.90 17.0 157.98 85.81 33.39 72.88

16 404.24 256.10 67.63 66.00 71.27 4.67 53.67 78.14 8.3 146.90 79.91 26.68 72.93

17 261.43 224.70 780.50 63.17 64.33 317.00 49.58 63.24 315.3 135.70 64.68 267.85 68.26

18 407.67 339.80 724.80 61.83 59.50 345.00 56.71 55.32 336.4 155.23 56.58 303.47 59.70

19 620.04 408.50 60.21 70.50 75.24 36.50 61.01 83.06 24.6 166.99 84.95 39.13 70.53

20 216.13 286.60 438.18 54.50 45.12 293.17 52.36 41.48 304.1 143.34 42.42 246.09 53.80

21 192.17 380.60 94.48 63.83 57.59 191.67 55.98 57.39 165.6 153.24 58.70 132.41 61.20

22 593.58 442.40 66.71 63.83 68.51 50.00 61.82 75.94 34.9 169.21 77.66 46.67 66.99

23 801.97 580.70 1032.89 77.33 57.85 355.00 66.99 65.85 354.6 183.38 67.35 329.24 59.93

24 785.28 625.90 181.03 70.33 59.68 71.00 68.05 67.64 24.2 186.27 69.18 38.78 60.26

25 297.68 443.00 374.63 61.33 41.39 225.83 59.19 26.71 249.7 162.03 27.32 197.31 40.60

26 403.71 491.10 1118.72 73.67 54.82 300.00 61.05 57.57 304.4 167.11 58.87 246.82 58.69

27 1009.22 866.40 913.82 75.17 45.63 371.33 74.75 52.50 367.5 204.62 53.69 345.51 50.65

28 290.08 581.30 84.08 71.33 76.95 186.33 63.05 70.73 156.9 172.59 72.34 125.63 64.02

29 973.73 969.50 404.23 70.50 46.23 61.33 76.64 48.30 34.9 209.78 49.39 46.69 47.98

30 923.96 961.50 111.43 68.33 82.90 87.50 75.95 73.08 86.2 207.89 74.74 81.44 59.29

31 1151.32 1131.00 1220.32 78.50 35.66 363.50 80.74 40.07 357.4 221.00 40.98 332.96 42.58

32 1071.39 1111.00 606.96 75.33 35.55 59.67 79.99 39.60 20.7 218.95 40.50 36.19 42.53

33 943.27 1001.00 117.52 75.83 80.91 88.33 76.84 72.89 88.9 210.34 74.54 83.13 58.87

34 492.78 954.60 207.90 79.17 54.22 203.33 73.14 65.69 160.0 200.20 67.18 128.01 57.28

35 1183.60 1427.00 1016.75 77.83 11.72 94.17 86.55 16.93 18.4 236.91 17.31 34.42 26.73

36 1029.10 1518.00 619.36 82.50 36.14 178.50 87.30 41.92 145.0 238.97 42.87 117.04 41.88

37 1196.33 1545.00 171.57 89.33 70.59 117.83 88.47 76.36 117.9 242.18 78.10 99.80 56.15

38 1387.22 1687.00 1077.89 88.00 11.94 88.33 92.68 21.13 52.6 253.70 21.61 59.20 28.86

39 1186.33 1646.00 211.88 92.33 67.91 104.33 90.34 74.04 125.5 247.28 75.72 104.34 54.72

40 1568.55 1861.00 1656.54 98.17 2.34 N/A 97.09 18.54 N/A 265.76 18.96 N/A 26.41

Table A.47: Physical measurements, perceptual estimates, and our model’s predictions (Phase 11).



A.6. Colour Appearance Data 232

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 64.47 68.09 43.88 9.17 9.78 17.50 19.75 21.07 3.3 54.17 21.53 22.74 62.37

2 52.69 66.23 44.25 2.50 2.18 N/A 13.83 9.68 N/A 37.93 9.89 N/A 50.52

3 106.44 87.19 354.74 32.17 70.68 301.67 28.83 55.30 315.1 79.09 56.51 267.59 83.61

4 70.16 85.91 46.17 6.33 7.19 106.00 27.59 17.90 69.9 75.67 18.29 70.88 48.64

5 149.33 118.10 51.59 35.17 50.71 8.00 36.89 45.99 4.2 101.20 47.00 23.46 67.42

6 190.11 131.60 589.65 39.17 75.21 326.33 38.32 61.92 320.6 105.13 63.28 277.56 76.75

7 62.76 95.13 60.95 21.67 35.23 202.50 29.16 18.91 191.3 80.00 19.33 155.39 48.62

8 232.62 160.80 946.58 53.00 75.73 302.50 40.97 71.97 310.8 112.38 73.55 259.46 80.03

9 82.17 143.30 51.11 33.67 48.20 192.50 37.27 34.85 166.8 102.23 35.62 133.46 58.39

10 304.82 209.60 62.67 49.50 71.04 10.17 47.00 63.46 8.2 128.92 64.85 26.61 70.16

11 135.93 156.40 57.56 28.00 30.11 113.83 40.18 31.30 66.6 110.21 31.99 68.69 53.29

12 111.05 206.00 57.49 50.17 67.57 192.33 43.22 43.17 164.7 118.57 44.12 131.70 60.34

13 214.36 178.50 166.53 40.33 52.44 364.50 43.61 43.08 374.2 119.63 44.03 353.35 60.01

14 196.07 282.30 373.73 48.67 48.16 269.33 48.72 35.95 297.3 133.65 36.74 235.21 51.86

15 545.97 352.40 71.90 68.50 77.26 3.67 55.62 75.84 14.1 152.58 77.50 31.18 70.50

16 420.25 277.80 81.63 55.50 73.06 2.50 51.65 69.69 7.0 141.67 71.22 25.69 70.13

17 278.14 247.50 800.73 56.17 59.00 330.17 47.77 58.68 316.0 131.02 59.96 269.22 66.92

18 425.59 363.50 744.02 56.67 63.01 350.00 54.64 51.54 335.9 149.88 52.67 302.64 58.64

19 634.39 429.30 73.83 66.50 72.85 24.67 58.77 75.79 21.3 161.21 77.45 36.63 68.57

20 232.35 309.30 455.13 49.00 47.12 276.00 50.38 37.82 304.5 138.21 38.65 246.90 52.31

21 207.44 403.30 108.79 59.83 63.42 192.50 53.86 51.35 166.8 147.74 52.47 133.40 58.95

22 611.09 465.50 81.66 59.17 62.76 40.67 59.64 69.18 30.9 163.60 70.70 43.76 65.03

23 816.35 601.60 1047.62 63.67 63.67 358.33 64.63 62.46 353.9 177.28 63.83 328.33 59.36

24 800.25 647.70 195.95 63.17 55.26 44.83 65.72 63.39 22.1 180.29 64.78 37.23 59.30

25 315.06 467.60 392.51 54.33 47.49 247.50 57.06 24.82 249.6 156.51 25.36 197.25 39.82

26 419.86 515.10 1135.37 68.00 56.71 295.00 58.87 54.64 305.3 161.49 55.84 248.59 58.17

27 1025.71 890.70 932.00 69.00 41.73 367.17 72.47 50.35 367.2 198.78 51.45 345.10 50.33

28 307.56 606.00 100.16 71.17 70.58 185.83 60.86 63.44 158.1 166.93 64.83 126.58 61.65

29 991.90 996.00 421.38 69.00 42.27 58.00 74.43 46.28 33.6 204.17 47.29 45.73 47.61

30 939.85 984.60 128.08 60.83 63.02 86.00 73.70 67.11 81.8 202.16 68.58 78.63 57.62

31 1170.49 1158.00 1241.17 68.33 44.30 363.17 78.61 39.14 356.9 215.63 40.00 332.30 42.61

32 1086.37 1133.00 623.79 69.17 41.58 56.00 77.72 38.39 19.6 213.20 39.23 35.40 42.43

33 958.30 1024.00 130.35 61.67 76.98 85.83 74.59 67.49 85.3 204.61 68.97 80.83 57.43

34 511.26 983.20 222.32 71.17 65.95 185.83 70.95 61.69 160.9 194.61 63.04 128.70 56.30

35 1203.23 1454.00 1035.93 71.67 17.30 92.17 84.61 16.63 17.1 232.09 16.99 33.45 26.77

36 1052.80 1551.00 637.58 76.67 34.76 173.33 85.54 40.80 145.0 234.65 41.70 117.03 41.70

37 1216.31 1574.00 187.93 70.83 71.30 115.50 86.75 71.60 115.8 237.97 73.17 98.64 54.85

38 1411.07 1722.00 1103.10 78.00 22.07 91.50 91.28 20.72 52.2 250.38 21.17 58.95 28.77

39 1205.44 1675.00 227.17 74.00 51.51 123.00 88.70 70.05 124.5 243.32 71.59 103.72 53.66

40 1586.78 1889.00 1672.76 87.00 14.33 361.33 95.86 18.57 345.4 262.95 18.98 316.62 26.58

Table A.48: Physical measurements, perceptual estimates, and our model’s predictions (Phase 12).



A.6. Colour Appearance Data 233

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 18.12 15.64 12.15 17.50 43.53 17.00 1.00 37.27 -3.8 2.55 39.17 16.47 382.49

2 12.63 14.82 12.55 9.50 12.15 105.00 1.00 16.25 24.0 2.55 17.08 38.69 252.55

3 56.36 28.96 254.19 42.83 91.79 300.83 29.97 75.92 312.4 76.34 79.78 262.52 99.72

4 20.63 24.11 13.04 25.83 37.65 131.17 27.67 28.95 60.2 70.50 30.43 64.38 64.09

5 59.75 40.71 18.30 46.33 74.97 10.17 40.42 65.87 4.8 102.99 69.22 23.93 79.97

6 109.20 53.76 435.71 50.67 85.90 327.83 42.04 77.22 318.9 107.11 81.15 274.51 84.91

7 17.93 29.17 22.82 32.67 50.53 193.33 30.40 25.66 189.6 77.46 26.97 153.65 57.56

8 148.27 72.66 701.15 64.33 89.17 301.67 45.00 85.97 307.4 114.66 90.35 252.86 86.59

9 28.21 55.57 16.58 49.33 77.53 191.67 41.47 51.02 160.1 105.65 53.62 128.14 69.49

10 134.69 85.58 27.14 57.17 86.24 3.00 51.44 80.40 11.2 131.05 84.50 28.93 78.33

11 53.16 60.29 21.40 48.00 57.18 141.17 44.26 44.78 70.0 112.75 47.05 70.93 63.02

12 43.33 89.14 20.90 55.33 75.06 189.17 48.23 60.32 158.2 122.88 63.39 126.67 70.06

13 96.94 71.49 106.11 56.00 41.31 365.83 47.93 59.22 369.7 122.11 62.23 348.09 69.64

14 103.47 133.70 267.55 55.50 50.30 257.50 54.22 43.99 302.4 138.15 46.22 242.62 56.43

15 243.20 151.00 32.47 71.50 90.61 9.17 59.74 88.55 20.4 152.21 93.06 35.96 76.27

16 187.93 117.10 40.50 68.83 75.71 5.83 55.99 83.98 9.2 142.66 88.25 27.36 76.72

17 163.13 115.90 592.40 65.17 60.39 320.17 52.62 68.45 315.2 134.05 71.93 267.80 71.45

18 232.08 174.30 551.84 61.50 67.27 350.00 59.75 60.16 336.0 152.23 63.22 302.75 62.86

19 283.22 187.70 34.20 74.33 91.78 39.17 62.79 86.69 29.6 159.98 91.10 42.79 73.61

20 124.58 147.60 328.79 57.67 58.32 269.00 55.81 45.99 307.1 142.19 48.34 252.18 56.88

21 96.41 198.20 57.50 62.33 55.87 205.83 59.76 63.12 160.8 152.25 66.33 128.68 64.39

22 274.80 209.40 39.03 70.33 91.59 70.00 63.93 79.23 41.5 162.87 83.26 51.41 69.75

23 426.50 290.50 774.27 73.83 73.88 358.67 69.01 67.55 352.2 175.81 70.99 326.03 61.99

24 369.77 303.10 125.60 67.17 66.80 46.67 69.91 66.29 24.8 178.12 69.66 39.24 61.00

25 163.89 233.00 278.67 59.67 35.87 213.00 62.83 26.10 270.7 160.08 27.42 213.18 40.38

26 252.86 265.20 837.77 69.67 58.77 298.17 64.51 58.18 305.7 164.36 61.14 249.38 59.50

27 523.31 442.30 690.95 70.00 55.15 370.33 76.53 51.88 362.2 194.99 54.52 339.06 51.58

28 147.56 308.70 48.90 70.83 99.22 185.33 66.80 77.90 152.5 170.19 81.87 122.37 67.66

29 482.56 496.10 298.96 71.50 47.56 57.00 78.48 44.38 32.7 199.96 46.64 45.06 47.11

30 440.94 489.00 69.24 70.33 92.85 95.00 77.75 76.84 96.0 198.10 80.75 87.54 62.28

31 609.87 588.60 907.43 76.67 33.96 365.00 82.09 39.58 352.6 209.13 41.60 326.57 43.51

32 539.69 571.10 451.72 71.67 41.21 56.67 81.42 35.65 12.6 207.44 37.47 30.01 41.46

33 449.89 508.50 71.58 71.67 84.80 90.33 78.51 76.99 98.5 200.01 80.91 89.05 62.04

34 258.43 512.40 139.13 79.50 73.67 184.00 76.44 66.96 155.7 194.75 70.37 124.74 58.64

35 624.66 750.10 755.00 88.17 4.65 106.00 87.40 15.38 -13.3 222.67 16.16 6.94 26.28

36 541.65 804.90 455.34 85.00 26.66 178.83 88.47 37.86 142.3 225.40 39.79 115.21 40.98

37 583.99 802.70 107.27 82.83 96.21 105.00 88.79 79.53 122.4 226.20 83.58 102.49 59.29

38 727.91 889.00 805.43 95.83 6.40 88.67 92.40 16.79 30.8 235.40 17.65 43.70 26.71

39 582.57 856.10 132.44 90.50 80.71 107.17 90.32 76.59 127.9 230.10 80.48 105.85 57.69

40 831.79 977.10 1181.01 100.00 2.64 390.00 95.43 18.99 342.8 243.14 19.96 312.94 27.95

Table A.49: Physical measurements, perceptual estimates, and our model’s predictions (Phase 13).



A.6. Colour Appearance Data 234

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 28.46 21.50 3.35 25.67 57.75 42.83 27.10 44.11 5.6 68.76 46.43 24.55 80.09

2 17.35 17.63 3.89 10.17 9.15 100.00 15.96 20.19 23.7 40.49 21.25 38.45 70.61

3 22.33 23.80 62.90 39.17 83.97 300.83 33.56 72.31 306.2 85.13 76.11 250.42 92.16

4 30.84 29.89 4.38 22.17 28.94 113.33 33.41 32.00 46.9 84.75 33.68 55.22 61.44

5 102.99 65.38 4.78 50.00 69.31 11.83 46.82 71.33 15.0 118.78 75.09 31.86 77.50

6 64.61 52.80 106.70 55.17 87.03 338.33 46.12 68.13 317.1 116.99 71.71 271.18 76.31

7 19.32 30.00 7.65 28.83 45.20 198.67 32.32 29.96 211.7 81.99 31.53 171.53 60.45

8 50.89 56.43 171.21 64.17 101.03 299.67 47.28 84.00 301.4 119.95 88.43 240.55 83.69

9 32.40 55.43 7.58 52.33 64.68 195.83 42.09 46.18 181.0 106.79 48.61 145.64 65.76

10 233.44 141.60 6.84 61.00 83.11 10.17 57.81 83.21 22.1 146.66 87.59 37.26 75.32

11 82.19 75.65 7.80 45.67 49.11 122.50 47.91 46.08 54.1 121.54 48.51 60.24 61.58

12 49.35 87.51 10.63 57.33 65.23 187.50 48.54 52.75 179.2 123.15 55.53 144.03 65.45

13 139.25 100.30 27.98 59.33 43.53 378.33 53.00 59.24 382.9 134.45 62.36 402.95 66.38

14 75.50 124.40 72.85 57.33 61.96 264.83 54.60 49.89 283.1 138.50 52.52 223.16 60.02

15 418.33 248.60 7.15 81.33 100.21 37.83 66.50 90.05 32.0 168.69 94.78 44.58 73.06

16 322.52 193.70 10.00 68.67 84.98 10.67 62.58 85.34 21.7 158.76 89.83 36.93 73.32

17 102.69 111.90 148.02 55.50 56.06 317.00 55.08 61.92 310.1 139.73 65.18 258.08 66.57

18 232.54 200.00 138.40 60.33 53.35 356.67 63.53 51.43 341.5 161.16 54.14 310.98 56.49

19 483.43 298.80 9.50 79.83 94.36 45.00 69.52 87.36 35.8 176.37 91.95 47.35 70.38

20 95.33 140.90 88.35 56.67 42.94 267.83 56.68 47.86 294.7 143.80 50.38 232.89 57.69

21 103.49 188.20 26.16 61.67 58.29 190.00 59.54 55.56 183.7 151.04 58.48 148.11 60.65

22 460.25 309.70 12.52 78.33 105.61 53.33 69.92 80.46 41.0 177.39 84.70 51.05 67.35

23 503.33 368.20 190.79 75.33 81.58 373.67 74.44 61.12 362.1 188.86 64.34 338.92 56.89

24 579.82 415.40 37.59 73.17 71.43 47.50 75.52 68.71 27.5 191.58 72.32 41.28 59.89

25 158.49 227.70 80.50 64.17 41.15 238.67 63.52 33.04 258.7 161.13 34.77 203.97 45.28

26 147.83 234.80 214.67 71.50 62.48 294.17 64.79 61.29 292.9 164.36 64.52 231.34 61.07

27 657.96 533.90 177.46 80.17 52.79 374.50 81.38 49.43 375.0 206.46 52.03 354.22 48.93

28 167.00 292.50 29.23 68.00 101.57 192.17 66.45 61.71 172.1 168.57 64.96 137.80 60.51

29 679.57 591.10 90.37 74.67 38.93 57.50 82.76 47.31 28.5 209.94 49.80 42.03 47.47

30 670.89 587.80 33.47 75.83 89.74 86.33 82.00 65.41 74.8 208.04 68.86 74.11 56.07

31 710.51 656.50 235.77 76.33 31.41 379.17 85.95 36.33 365.6 218.04 38.24 343.14 40.82

32 715.61 655.60 129.02 77.00 34.59 55.33 85.29 39.10 16.9 216.38 41.15 33.35 42.51

33 678.30 603.80 36.53 72.83 70.57 89.83 82.60 63.89 76.0 209.55 67.25 74.89 55.22

34 281.14 479.90 61.97 76.17 65.58 182.33 75.68 55.41 176.8 191.99 58.33 141.84 53.72

35 729.03 787.80 211.55 86.67 8.50 64.17 89.81 16.82 5.0 227.84 17.70 24.14 27.17

36 639.23 809.50 148.55 80.17 34.96 160.83 89.42 31.37 151.3 226.85 33.02 121.55 37.18

37 821.76 868.80 58.23 81.83 81.27 102.33 91.57 59.48 106.7 232.29 62.61 93.53 50.60

38 863.08 933.40 230.01 91.50 10.23 59.17 94.94 18.59 32.3 240.86 19.57 44.79 27.78

39 796.50 902.10 70.22 81.50 66.96 106.67 92.47 55.99 117.9 234.57 58.94 99.81 48.86

40 919.57 1004.00 322.02 99.17 3.23 N/A 97.80 15.87 N/A 248.10 16.70 N/A 25.29

Table A.50: Physical measurements, perceptual estimates, and our model’s predictions (Phase 14).



A.6. Colour Appearance Data 235

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 41.90 38.26 21.58 22.50 35.59 398.00 24.21 35.84 1.6 66.24 36.66 21.43 73.56

2 30.09 36.34 21.96 7.17 6.12 166.67 18.72 16.69 53.5 51.22 17.07 59.82 57.08

3 83.74 57.29 330.69 45.83 90.83 301.83 33.53 72.56 311.6 91.77 74.22 260.97 88.92

4 47.43 55.88 23.82 17.67 20.02 114.50 32.44 28.80 68.4 88.77 29.46 69.87 56.96

5 126.35 88.11 29.47 48.00 64.74 7.00 42.33 65.82 6.8 115.84 67.32 25.48 75.38

6 166.52 101.17 563.47 56.33 93.13 328.00 43.72 74.44 318.7 119.66 76.14 274.09 78.87

7 40.19 65.07 38.63 25.33 57.90 200.50 34.16 27.69 190.3 93.49 28.32 154.33 54.42

8 209.69 130.72 920.62 64.00 91.60 299.83 46.49 84.89 306.4 127.22 86.83 250.79 81.69

9 59.78 113.34 29.10 49.50 78.23 213.17 42.83 50.91 163.9 117.21 52.08 131.06 65.91

10 281.38 179.36 40.56 57.00 80.12 3.33 52.88 81.75 13.0 144.72 83.62 30.31 75.16

11 112.75 125.92 35.28 42.50 47.60 130.33 45.82 44.95 71.8 125.41 45.97 72.16 59.87

12 88.44 175.44 35.56 57.83 81.15 209.00 49.04 60.06 161.8 134.21 61.43 129.41 66.90

13 190.25 147.50 143.06 53.17 58.10 368.83 49.39 57.19 374.3 135.15 58.50 353.40 65.05

14 172.98 251.26 350.88 51.50 51.35 272.83 54.75 43.73 294.5 149.84 44.72 232.77 54.02

15 522.12 321.78 49.44 80.83 100.67 10.83 61.69 90.77 21.5 168.83 92.85 36.82 73.33

16 396.83 247.60 59.74 64.67 66.22 7.50 57.69 85.65 11.3 157.87 87.60 29.04 73.66

17 254.56 216.58 774.80 60.50 62.18 318.00 53.69 66.51 313.8 146.93 68.03 265.13 67.28

18 400.00 331.02 717.04 59.50 63.74 348.33 60.76 57.48 336.7 166.27 58.79 303.90 58.80

19 612.21 399.60 52.22 79.67 94.68 40.50 64.92 89.14 30.4 177.66 91.17 43.38 70.83

20 208.73 277.80 430.64 54.33 42.87 286.33 56.44 44.66 303.1 154.47 45.68 243.99 53.77

21 184.48 371.60 86.82 63.67 69.23 187.50 60.02 63.85 164.3 164.26 65.31 131.44 62.35

22 587.87 435.24 59.45 70.00 92.74 50.50 65.81 81.72 41.1 180.10 83.58 51.10 67.36

23 793.36 571.04 1023.32 72.33 69.33 365.50 70.87 66.98 355.2 193.95 68.51 330.07 58.76

24 778.26 617.60 173.40 76.33 69.86 48.50 71.91 69.92 27.6 196.81 71.51 41.34 59.60

25 290.53 434.64 367.67 55.00 45.46 240.83 63.25 28.47 249.1 173.10 29.12 196.89 40.55

26 396.47 482.60 1114.08 75.00 64.08 295.83 65.05 58.98 303.0 178.03 60.32 243.91 57.56

27 1001.32 857.46 905.04 72.83 63.14 378.83 78.40 52.43 367.7 214.56 53.62 345.73 49.43

28 283.60 574.08 76.99 81.83 88.61 186.67 67.06 77.58 155.4 183.52 79.35 124.56 65.02

29 967.56 962.04 396.56 67.33 55.46 59.00 80.22 48.45 37.5 219.54 49.56 48.54 46.98

30 917.54 953.92 105.41 69.83 88.32 86.67 79.50 77.54 91.6 217.55 79.30 84.81 59.70

31 1144.50 1122.80 1212.58 73.50 35.22 378.33 84.07 39.20 357.7 230.06 40.09 333.30 41.28

32 1063.12 1101.20 597.83 71.33 33.85 54.17 83.33 39.12 22.1 228.04 40.01 37.24 41.42

33 936.05 992.68 109.94 74.50 86.41 93.83 80.32 77.45 94.2 219.81 79.22 86.45 59.36

34 484.57 945.68 198.95 78.17 76.84 186.17 76.83 68.62 158.7 210.27 70.19 127.05 57.13

35 1176.26 1418.20 1008.69 87.00 7.88 97.50 89.38 16.39 19.3 244.60 16.76 35.10 25.89

36 1024.12 1512.40 612.35 81.67 42.10 166.17 90.11 41.48 144.8 246.60 42.43 116.87 41.01

37 1190.34 1537.40 165.43 85.50 96.93 103.33 91.01 79.10 120.3 249.08 80.90 101.21 56.35

38 1382.70 1681.80 1073.19 91.00 8.05 87.00 94.87 20.27 53.7 259.63 20.73 59.93 27.94

39 1179.99 1639.60 204.01 86.33 80.22 107.83 92.69 76.19 126.9 253.67 77.93 105.24 54.81

40 1561.99 1852.60 1651.22 99.50 4.07 380.00 98.57 17.60 345.7 269.74 18.00 317.14 25.54

Table A.51: Physical measurements, perceptual estimates, and our model’s predictions (Phase 15).



A.6. Colour Appearance Data 236

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 12.36 12.02 6.71 6.67 26.18 395.00 1.00 20.03 0.9 3.27 19.22 20.87 247.65

2 14.21 15.49 6.33 6.83 25.88 87.50 1.00 19.68 48.3 3.27 18.88 56.25 245.47

3 51.61 28.08 234.05 21.33 101.00 301.17 1.00 75.71 310.7 3.27 72.64 259.23 481.44

4 159.01 71.32 13.59 33.33 117.14 2.50 25.85 93.72 -2.6 84.46 89.91 17.67 105.34

5 511.93 135.80 2169.70 40.00 94.91 327.67 40.63 101.43 313.4 132.71 97.31 264.30 87.42

6 418.63 212.50 12.62 48.50 121.52 399.50 44.34 104.78 16.7 144.82 100.52 33.15 85.06

7 585.45 233.60 2808.28 48.67 89.46 305.33 45.39 105.75 302.8 148.28 101.45 243.40 84.45

8 264.38 256.10 6.70 38.17 54.78 98.33 44.59 80.01 87.2 145.66 76.76 82.03 74.12

9 119.30 325.00 99.72 44.67 94.71 195.67 45.70 68.08 189.4 149.27 65.32 153.46 67.53

10 957.14 609.00 74.48 64.17 85.15 12.83 57.55 94.79 28.0 187.99 90.94 41.61 71.01

11 211.41 708.70 39.54 58.33 96.46 199.17 55.60 103.37 168.3 181.63 99.17 134.61 75.44

12 657.73 808.80 138.87 43.33 68.82 148.67 59.44 65.66 111.3 194.16 62.99 96.06 58.15

13 965.47 890.40 904.20 53.50 66.49 360.00 61.80 47.30 358.3 201.87 45.38 334.11 48.41

14 1431.62 928.80 464.40 60.67 91.11 5.17 63.56 84.73 -8.3 207.62 81.28 12.07 63.88

15 439.37 972.10 1256.21 58.50 78.05 247.50 60.57 70.49 263.6 197.85 67.63 207.69 59.69

16 1128.14 1053.00 2896.00 62.33 60.79 309.83 63.81 64.40 312.2 208.44 61.79 262.14 55.59

17 337.86 1084.00 63.89 60.00 97.23 196.67 61.43 105.91 166.4 200.66 101.61 133.09 72.65

18 1548.81 1519.00 2556.04 60.17 47.17 334.17 69.35 49.32 325.8 226.55 47.31 286.41 46.66

19 2090.34 1573.00 16.19 63.33 105.80 51.17 70.23 115.08 84.2 229.42 110.41 80.13 70.83

20 2207.29 1598.00 3118.45 61.50 79.90 370.33 71.39 67.01 348.0 233.21 64.28 320.38 53.60

21 2223.13 1882.00 34.78 64.17 95.39 52.00 72.70 110.68 93.4 237.49 106.18 85.95 68.27

22 1498.01 2092.00 1956.12 61.50 44.62 253.33 73.36 32.71 282.6 239.65 31.38 222.78 36.95

23 2477.33 2169.00 697.35 66.83 57.64 39.17 75.54 59.96 32.2 246.74 57.52 44.72 49.30

24 1096.26 2361.00 320.34 69.17 82.15 190.83 74.03 84.74 160.9 241.81 81.29 128.71 59.20

25 2971.35 2735.00 2586.56 69.67 51.42 387.83 79.63 44.22 363.0 260.13 42.42 340.06 41.23

26 1996.49 2798.00 3759.46 73.00 66.34 288.50 78.26 46.00 293.1 255.66 44.13 231.57 42.42

27 1999.92 2992.00 1854.77 73.33 44.31 231.00 79.41 30.24 204.1 259.40 29.01 166.76 34.14

28 3451.11 3706.00 1282.88 74.33 30.81 59.33 84.75 44.61 67.0 276.83 42.80 68.97 40.14

29 3511.12 3739.00 3300.11 78.50 20.09 393.33 85.09 28.26 353.1 277.97 27.12 327.28 31.89

30 3543.47 3909.00 53.29 77.17 107.60 92.00 84.78 119.38 121.6 276.93 114.53 102.01 65.66

31 2040.48 3922.00 247.14 76.67 101.35 190.33 83.32 99.50 148.5 272.17 95.46 119.54 60.46

32 3806.31 4037.00 1768.59 77.67 32.40 53.33 86.65 37.30 45.5 283.04 35.78 54.24 36.30

33 3336.75 4281.00 2187.57 85.17 16.74 197.50 87.11 24.81 125.4 284.54 23.80 104.29 29.53

34 3723.35 4348.00 104.65 79.17 110.79 94.50 86.88 112.21 123.8 283.80 107.65 103.33 62.88

35 2496.79 4348.00 466.46 77.67 78.83 172.50 85.89 84.52 147.0 280.56 81.08 118.42 54.89

36 3595.13 5319.00 1464.41 81.17 50.63 184.17 91.27 51.61 144.0 298.16 49.52 116.38 41.61

37 4016.11 5489.00 172.26 84.17 102.45 105.00 91.50 108.89 132.3 298.90 104.47 108.58 60.36

38 4494.54 5512.00 2632.77 87.17 17.47 101.67 93.12 26.94 96.2 304.17 25.85 87.64 29.76

39 4762.91 5719.00 4159.67 96.50 2.99 N/A 94.19 9.54 N/A 307.67 9.15 N/A 17.61

40 4116.73 5933.00 340.81 83.67 108.50 118.00 93.39 96.16 134.6 305.06 92.25 110.07 56.14

Table A.52: Physical measurements, perceptual estimates, and our model’s predictions (Phase 16).



A.6. Colour Appearance Data 237

Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 31.89 36.11 20.98 2.00 4.42 380.00 1.00 12.89 26.1 3.26 12.37 40.20 198.76

2 34.40 40.08 21.13 2.17 5.55 N/A 1.00 13.88 N/A 3.26 13.32 N/A 206.25

3 73.95 54.12 257.68 15.83 94.28 303.33 1.00 58.67 315.2 3.26 56.31 267.81 424.00

4 184.53 98.45 29.46 22.83 102.07 398.83 1.00 71.14 -3.8 3.26 68.28 16.45 466.90

5 543.14 162.50 2238.20 32.00 91.97 299.33 34.47 95.55 316.3 112.51 91.70 269.84 92.15

6 450.86 242.70 27.47 38.83 101.58 398.00 38.69 87.98 10.6 126.25 84.43 28.49 83.48

7 623.63 267.00 2907.38 41.17 86.49 300.00 39.94 98.67 306.6 130.34 94.69 251.20 87.01

8 296.72 292.80 22.27 37.33 60.28 102.50 39.16 61.51 76.9 127.79 59.03 75.48 69.38

9 141.17 356.20 115.61 41.33 79.43 199.17 39.87 58.44 189.6 130.12 56.08 153.67 67.02

10 1006.43 653.20 92.51 55.67 76.72 10.17 52.35 86.52 22.5 170.83 83.03 37.54 71.17

11 241.28 763.10 57.11 55.50 86.23 213.33 50.48 89.85 171.2 164.73 86.23 137.10 73.85

12 695.66 855.60 157.55 46.67 48.92 127.50 54.14 58.66 108.5 176.69 56.29 94.53 57.62

13 1026.10 953.90 955.07 50.33 54.12 356.67 56.74 45.16 358.3 185.19 43.34 334.15 49.38

14 1510.38 993.00 501.16 61.17 78.35 2.83 58.57 81.47 -8.4 191.15 78.19 11.94 65.28

15 472.89 1029.00 1309.59 53.00 74.05 264.33 55.37 67.31 264.9 180.71 64.60 208.70 61.03

16 1185.02 1115.00 3004.45 62.67 63.30 308.00 58.71 65.61 313.5 191.60 62.97 264.62 58.52

17 362.11 1129.00 77.16 58.17 83.18 211.67 56.09 95.82 169.2 183.05 91.96 135.41 72.35

18 1621.87 1596.00 2662.74 61.83 51.85 339.50 64.40 51.03 325.9 210.17 48.97 286.63 49.27

19 2189.50 1655.00 28.66 68.67 109.71 50.00 65.56 103.18 72.2 213.95 99.02 72.38 69.44

20 2296.66 1676.00 3235.94 64.00 74.84 370.83 66.51 68.99 347.2 217.04 66.21 319.20 56.38

21 2328.70 1978.00 44.38 66.00 92.75 50.00 68.14 101.10 84.4 222.38 97.03 80.27 67.43

22 1563.74 2183.00 2029.92 62.50 50.43 265.67 68.54 33.56 282.5 223.70 32.20 222.70 38.73

23 2574.96 2262.00 731.73 68.83 56.87 33.67 70.87 61.37 29.9 231.30 58.89 43.04 51.51

24 1154.15 2475.00 339.74 68.17 81.38 190.00 69.39 83.65 162.6 226.46 80.28 130.02 60.78

25 3091.92 2858.00 2681.91 67.83 59.53 374.17 75.34 46.24 363.2 245.88 44.37 340.20 43.37

26 2094.67 2927.00 3899.40 70.50 54.51 294.17 73.91 48.40 295.1 241.19 46.45 233.23 44.80

27 2083.35 3114.00 1920.36 72.17 40.21 223.50 75.04 32.12 202.4 244.89 30.82 165.72 36.21

28 3600.76 3865.00 1342.36 80.33 27.05 55.00 81.08 47.16 64.6 264.59 45.26 67.36 42.22

29 3635.44 3877.00 3417.92 76.67 26.87 384.50 81.31 30.28 352.9 265.35 29.06 327.04 33.78

30 2109.65 4042.00 272.38 78.33 90.55 175.50 79.32 97.76 150.2 258.85 93.82 120.73 61.46

31 3670.72 4054.00 65.44 75.33 102.33 88.67 81.26 111.77 117.1 265.20 107.27 99.39 64.92

32 3981.29 4230.00 1857.74 74.83 34.38 53.00 83.36 39.97 44.6 272.06 38.35 53.63 38.33

33 3437.79 4418.00 2249.42 80.33 17.46 155.00 83.51 27.11 126.6 272.54 26.02 105.01 31.54

34 3842.10 4495.00 120.09 75.00 96.35 93.00 83.57 107.16 120.5 272.73 102.84 101.34 62.68

35 2596.52 4523.00 485.99 79.17 79.81 175.83 82.39 86.19 148.0 268.88 82.72 119.16 56.62

36 3767.22 5573.00 1544.55 84.50 42.95 176.67 88.91 55.05 144.6 290.16 52.83 116.75 43.56

37 4644.97 5701.00 2723.72 88.00 18.96 92.17 90.76 29.58 96.4 296.20 28.39 87.81 31.60

38 4181.37 5707.00 201.80 86.67 97.32 102.50 89.25 105.89 131.0 291.27 101.62 107.77 60.29

39 4942.49 5924.00 4327.15 96.67 2.35 N/A 92.15 10.74 N/A 300.73 10.31 N/A 18.90

40 4274.83 6157.00 360.46 81.67 93.56 109.17 91.41 97.24 134.1 298.32 93.32 109.75 57.09

Table A.53: Physical measurements, perceptual estimates, and our model’s predictions (Phase 17).
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Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 24.34 24.33 13.60 3.00 22.70 0.40 1.00 19.62 7.5 3.57 18.25 26.06 234.35

2 28.45 31.05 13.62 6.50 9.44 93.80 1.00 19.88 46.9 3.57 18.50 55.26 235.95

3 109.33 60.53 504.19 24.17 102.26 302.17 1.00 78.86 310.1 3.57 73.36 258.01 469.89

4 344.91 155.20 30.85 40.83 117.41 394.17 28.46 98.40 -2.4 101.65 91.54 17.84 98.39

5 1088.84 292.20 4631.31 44.50 94.88 329.67 41.29 104.50 313.6 147.47 97.22 264.83 84.18

6 898.29 451.00 25.71 56.17 120.77 N/A 45.36 110.30 N/A 162.02 102.61 N/A 82.51

7 1237.86 503.00 5962.05 52.50 97.53 301.67 46.05 108.88 302.6 164.47 101.29 243.01 81.36

8 535.36 517.60 16.90 44.33 59.71 95.33 44.94 81.89 86.0 160.49 76.18 81.31 71.43

9 243.90 671.70 214.07 49.67 80.84 198.33 46.29 71.02 189.6 165.32 66.07 153.67 65.54

10 2031.34 1278.00 160.66 61.17 93.70 11.33 58.41 99.07 27.8 208.64 92.17 41.50 68.91

11 439.42 1477.00 82.77 66.33 96.45 194.17 56.32 107.77 167.8 201.15 100.26 134.25 73.20

12 1352.83 1664.00 300.56 51.50 59.05 139.17 60.00 67.71 111.3 214.31 62.99 96.08 56.21

13 2017.78 1849.00 1933.10 61.17 57.21 358.33 62.49 49.08 359.1 223.20 45.66 335.09 46.89

14 3005.41 1926.00 992.92 68.17 84.73 399.17 64.29 88.59 -8.2 229.64 82.41 12.10 62.11

15 927.66 2052.00 2704.55 62.67 81.95 293.83 61.43 72.83 262.5 219.39 67.75 206.89 57.62

16 2369.41 2207.00 6178.95 70.00 58.46 310.33 64.55 65.83 312.0 230.54 61.24 261.83 53.44

17 682.56 2210.00 135.66 69.67 99.43 211.33 61.87 109.70 166.4 220.96 102.05 133.08 70.46

18 3249.59 3171.00 5487.03 69.17 58.52 341.00 70.15 50.43 326.0 250.57 46.92 286.68 44.86

19 4318.54 3210.00 27.96 76.33 117.69 55.33 70.78 121.00 84.8 252.79 112.56 80.50 69.18

20 4625.45 3326.00 6649.08 68.33 87.31 370.33 72.18 69.11 348.7 257.80 64.29 321.24 51.78

21 4597.17 3850.00 72.42 66.50 104.67 51.67 73.32 115.15 93.2 261.88 107.12 85.80 66.31

22 3082.79 4321.00 4168.25 73.17 43.88 271.00 74.04 34.08 280.3 264.46 31.71 220.84 35.90

23 5121.67 4448.00 1492.25 72.00 64.54 29.50 76.21 62.17 31.2 272.21 57.84 43.96 47.79

24 2231.99 4864.00 686.41 73.50 90.94 191.67 74.71 87.62 161.2 266.83 81.51 128.97 57.31

25 6157.79 5637.00 5507.23 73.17 58.26 10.83 80.40 45.67 363.5 287.17 42.49 340.65 39.88

26 4145.83 5802.00 8015.02 73.67 56.21 295.83 79.07 47.24 292.1 282.40 43.94 230.66 40.90

27 4098.75 6146.00 3942.69 76.00 33.53 232.00 80.09 31.58 203.9 286.07 29.38 166.67 33.23

28 7106.92 7600.00 2716.28 84.50 27.69 57.83 85.53 46.21 66.7 305.47 42.99 68.77 38.89

29 7254.22 7705.00 7029.93 88.83 24.10 384.50 85.93 28.87 353.4 306.93 26.86 327.73 30.67

30 7217.23 7933.00 111.41 81.83 118.85 90.67 85.34 123.90 121.6 304.82 115.26 102.01 63.75

31 4139.24 8022.00 535.82 84.17 111.77 173.33 84.00 102.37 148.8 300.02 95.23 119.72 58.41

32 7771.79 8212.00 3756.60 84.00 30.52 43.17 87.28 38.37 44.4 311.73 35.69 53.49 35.08

33 7543.19 8791.00 236.97 82.33 125.17 86.67 87.41 114.88 123.6 312.21 106.87 103.17 60.66

34 6845.62 8796.00 4653.72 92.00 9.57 161.67 87.93 25.73 127.3 314.05 23.94 105.44 28.62

35 5157.02 9056.00 1017.39 79.00 84.54 173.17 86.99 86.94 147.3 310.69 80.88 118.68 52.90

36 7377.39 10950.00 3168.49 85.17 40.51 177.50 92.24 52.71 144.7 329.44 49.03 116.86 40.00

37 9256.02 11340.00 5617.57 93.00 12.21 80.00 94.10 27.72 96.6 336.10 25.79 87.89 28.72

38 8294.38 11350.00 366.19 85.17 113.10 101.67 92.58 112.80 132.4 330.67 104.94 108.63 58.41

39 9756.02 11660.00 8853.97 96.83 2.67 N/A 94.96 10.23 N/A 339.15 9.52 N/A 17.37

40 8441.72 12200.00 724.31 88.83 120.79 105.00 94.37 99.37 134.7 337.08 92.44 110.14 54.29

Table A.54: Physical measurements, perceptual estimates, and our model’s predictions (Phase 18).
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Physical measurements Perceptual estimates Predicted appearance

Colour X Y[ cd/m2] Z J0 M0 H0 J M H Q C h s

1 64.08 73.06 44.65 1.83 4.16 N/A 1.00 12.78 N/A 3.56 11.90 N/A 189.50

2 71.30 83.41 46.37 2.50 4.16 N/A 1.00 14.08 N/A 3.56 13.11 N/A 198.89

3 152.66 111.80 546.27 15.00 81.23 302.50 1.00 60.95 314.7 3.56 56.77 266.86 413.85

4 388.52 205.70 61.51 33.83 98.89 395.83 16.53 75.04 -3.4 58.82 69.90 16.87 112.95

5 1131.57 340.70 4677.55 39.17 94.96 328.83 35.11 98.48 316.7 124.94 91.73 270.58 88.79

6 954.02 510.10 60.85 45.17 110.92 398.33 39.88 92.36 10.4 141.93 86.02 28.30 80.67

7 1302.90 561.80 6104.10 47.33 98.38 303.33 40.56 101.67 306.5 144.35 94.70 251.04 83.92

8 583.15 575.20 45.51 43.67 56.54 105.00 39.25 63.50 76.6 139.67 59.14 75.28 67.42

9 287.49 731.40 249.81 49.67 84.06 215.83 40.60 60.75 190.0 144.48 56.58 154.12 64.84

10 2091.48 1341.00 194.78 59.67 86.80 10.17 53.12 90.74 22.1 189.03 84.52 37.25 69.28

11 481.80 1540.00 113.83 55.50 90.28 198.83 50.92 93.64 170.8 181.22 87.22 136.76 71.88

12 1401.97 1725.00 338.97 53.17 54.50 131.67 54.61 60.12 108.0 194.35 55.99 94.25 55.62

13 2090.73 1930.00 1999.23 60.33 55.91 358.33 57.26 47.13 359.1 203.79 43.90 335.07 48.09

14 3088.20 2005.00 1043.93 65.17 75.58 2.17 59.13 85.43 -8.4 210.45 79.57 11.97 63.71

15 973.04 2114.00 2764.06 55.00 77.41 285.50 56.04 69.70 264.2 199.44 64.92 208.13 59.12

16 2438.32 2284.00 6300.84 70.33 59.85 309.50 59.32 67.34 313.5 211.11 62.72 264.52 56.48

17 732.90 2286.00 167.61 60.67 97.59 192.50 56.63 98.71 169.2 201.54 91.94 135.39 69.98

18 3328.01 3255.00 5585.21 67.50 52.55 336.00 65.08 52.38 326.4 231.61 48.79 287.38 47.56

19 4394.58 3288.00 55.72 70.33 107.84 48.83 65.93 107.42 71.8 234.64 100.05 72.10 67.66

20 4719.83 3412.00 6780.75 64.00 80.81 386.67 67.21 71.58 347.9 239.17 66.67 320.20 54.71

21 4696.31 3954.00 103.29 75.00 105.80 50.00 68.66 103.81 82.8 244.34 96.69 79.27 65.18

22 3164.93 4429.00 4264.17 68.00 49.00 258.33 69.20 34.90 281.0 246.28 32.51 221.46 37.64

23 5199.51 4531.00 1523.84 71.17 68.21 28.00 71.44 63.98 28.9 254.23 59.60 42.33 50.17

24 2308.14 4988.00 732.18 69.50 87.77 223.33 69.99 85.87 163.0 249.09 79.98 130.38 58.71

25 6271.83 5753.00 5622.41 71.33 57.34 369.17 76.03 48.29 363.5 270.58 44.98 340.58 42.25

26 4267.48 5959.00 8199.61 76.83 64.17 295.17 74.71 49.94 294.2 265.88 46.52 232.46 43.34

27 4220.96 6311.00 4063.33 72.17 45.27 254.50 75.83 33.16 203.5 269.88 30.88 166.38 35.05

28 7198.48 7710.00 2791.25 82.67 41.86 59.17 81.70 48.70 63.8 290.74 45.36 66.81 40.93

29 7367.16 7823.00 7154.88 83.83 26.33 378.00 82.17 31.42 353.5 292.43 29.26 327.89 32.78

30 7378.83 8125.00 139.22 79.17 108.95 89.83 82.03 115.54 116.9 291.92 107.62 99.23 62.91

31 4219.20 8156.00 579.06 79.17 91.91 175.00 80.14 100.83 150.4 285.20 93.92 120.86 59.46

32 7984.78 8454.00 3873.57 81.17 43.10 52.50 84.08 41.38 43.4 299.23 38.54 52.74 37.18

33 6935.08 8903.00 4746.89 90.00 15.50 166.00 84.42 27.53 126.3 300.43 25.65 104.82 30.27

34 7696.87 8989.00 248.94 79.33 109.86 91.67 84.33 110.91 120.3 300.10 103.31 101.22 60.79

35 5183.23 9081.00 1057.18 80.33 79.04 181.33 83.19 88.00 148.4 296.06 81.97 119.42 54.52

36 7504.09 11150.00 3230.11 83.83 56.69 184.00 89.77 56.65 145.0 319.47 52.76 117.06 42.11

37 9299.93 11400.00 5682.85 93.33 18.16 89.17 91.67 30.34 95.5 326.24 28.26 87.23 30.50

38 8399.19 11490.00 418.34 85.00 99.65 101.67 90.34 109.69 131.0 321.49 102.17 107.76 58.41

39 9947.84 11880.00 9037.32 96.33 2.76 N/A 93.18 11.54 N/A 331.61 10.75 N/A 18.65

40 8604.66 12420.00 764.81 86.67 103.85 117.50 92.65 100.21 134.0 329.72 93.34 109.70 55.13

Table A.55: Physical measurements, perceptual estimates, and our model’s predictions (Phase 19).
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A.7 Similarity Experimental Data

This appendix provides the psychophysical experimental data which was used to evaluate our re-

production model. Two real scenes were compared with six different reproduction methods: HDR

tone-mapping algorithms ([Reinhard et al., 2002], [Durand and Dorsey, 2002], and [Reinhard and

Devlin, 2005]), an image appearance model (iCAM06), and our methods (J Mh and JCh colour

connection spaces). Ten participants for each scene judged similarity of the reproductions to their

reference real-world scene, using a five-point scoring scale, in terms of realism, lightness, and colour

reproductions. These scale categories were labelled with the following descriptions: 1. (not similar),

2. (slightly similar), 3. (moderately similar), 4. (very much similar), and 5. (extremely similar).

Participant Criteria Durand&Dorsey Reinhard et al. Reinhard&Devlin iCAM06 Our model (J Mh) Our model (JCh)

1 Realism 3.5 2.0 2.5 1.5 3.5 3.5

Lightness 2.5 1.0 2.0 1.5 4.0 3.0

Colour 2.0 2.0 2.0 2.5 3.5 3.0

2 Realism 2.0 3.5 2.5 1.0 5.0 3.0

Lightness 1.5 2.5 2.0 2.5 5.0 4.0

Colour 2.5 3.0 3.5 4.0 5.0 3.0

3 Realism 2.5 2.5 3.5 2.0 4.0 3.5

Lightness 3.0 2.5 2.5 2.0 4.5 5.0

Colour 4.0 2.0 3.5 3.0 3.5 4.0

4 Realism 2.0 1.0 2.5 2.0 4.0 4.5

Lightness 2.0 1.0 1.5 2.0 4.0 2.5

Colour 2.0 2.5 2.0 3.5 5.0 3.5

5 Realism 1.5 2.0 2.0 2.5 4.0 3.5

Lightness 1.0 4.0 1.0 3.5 4.0 2.0

Colour 3.0 3.5 2.5 2.5 4.5 3.0

6 Realism 2.0 2.0 2.0 3.5 3.5 3.0

Lightness 2.0 3.5 2.0 4.0 3.0 3.0

Colour 2.0 3.0 2.0 4.0 3.0 3.5

7 Realism 2.0 2.0 3.5 3.0 4.0 3.0

Lightness 2.5 2.0 3.5 3.0 4.5 4.5

Colour 2.0 2.5 2.0 4.0 3.5 3.5

8 Realism 2.0 3.0 3.0 4.5 4.0 3.5

Lightness 2.0 3.5 3.0 4.0 4.0 3.5

Colour 1.0 2.5 1.5 4.5 3.5 2.5

9 Realism 3.0 3.5 4.0 3.0 4.5 4.0

Lightness 2.0 4.0 2.5 2.5 4.5 4.0

Colour 4.5 4.5 5.0 3.0 4.0 5.0

10 Realism 1.5 2.0 1.0 3.0 5.0 4.0

Lightness 2.5 1.5 3.5 3.5 4.5 4.0

Colour 2.5 1.5 3.5 2.5 5.0 4.0

Table A.56: Physical measurements of perceived similarity of a real scene (scene one).
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Participant Criteria Durand&Dorsey Reinhard et al. Reinhard&Devlin iCAM06 Our model (J Mh) Our model (JCh)

1 Realism 3.0 2.5 3.0 3.5 4.5 4.0

Lightness 2.5 1.5 4.0 2.5 3.0 3.5

Colour 3.5 2.0 4.0 3.5 3.0 3.0

2 Realism 2.0 4.0 1.5 3.0 4.5 3.0

Lightness 2.0 3.5 1.0 2.0 5.0 4.0

Colour 2.0 4.5 3.5 2.5 5.0 3.5

3 Realism 1.0 2.5 1.0 3.5 3.5 3.5

Lightness 1.0 3.5 1.0 4.0 3.5 3.5

Colour 2.5 3.5 1.5 4.0 5.0 3.5

4 Realism 2.0 4.0 2.0 3.0 4.0 3.0

Lightness 1.5 3.0 1.0 3.0 4.0 2.5

Colour 3.0 3.5 3.0 2.0 4.0 4.0

5 Realism 1.5 4.0 1.0 3.0 3.5 3.5

Lightness 1.0 3.0 1.0 2.5 4.5 3.0

Colour 3.0 3.5 2.5 4.0 3.5 4.5

6 Realism 1.5 3.0 1.5 3.5 4.0 3.5

Lightness 2.5 3.5 1.5 3.0 3.5 3.0

Colour 2.0 4.0 1.0 3.0 4.0 3.0

7 Realism 1.5 3.5 1.5 4.0 5.0 3.5

Lightness 1.5 4.0 1.5 3.0 5.0 3.5

Colour 3.0 5.0 2.5 4.0 5.0 5.0

8 Realism 2.5 4.5 2.0 4.5 5.0 5.0

Lightness 1.5 3.5 1.0 2.5 4.5 3.5

Colour 3.0 4.5 4.0 3.5 5.0 4.5

9 Realism 2.0 2.5 1.0 4.0 4.0 4.5

Lightness 1.0 3.5 1.0 4.5 3.5 4.0

Colour 2.0 4.0 1.0 3.0 4.5 4.0

10 Realism 2.0 3.0 1.5 3.0 3.5 3.0

Lightness 2.0 2.0 2.0 2.5 3.5 4.0

Colour 3.5 4.0 3.0 3.0 4.0 2.0

Table A.57: Physical measurements of perceived similarity of a real scene (scene two).
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high-dynamic-range display, 56

high-dynamic-range imaging, 51

high-luminance display, 99

HMI bulb, 100

HPE transform, 32, 43

hue, 25, 107, 136, 138

hue quadrature, 136

human visual system, 22

Hunt effect, 27, 123, 135, 140

Hunt-Pointer-Estévez transform, 32

Hunt94, 33

hydrargyrum medium-arc iodide bulb, 99

iCAM, 70

ICC profile, 11, 54

illuminance, 9

illuminant, 10

image appearance model, 67, 70

interval, 26

irradiance, 9

IT8.7/1 target, 81

JCh colour space, 158

JMh colour space, 158

JND, 25

just-noticeable difference, 25

knee, 16

Kodak Ektachrome professional film, 81

Lambertian surface, 10

latent image, 14

LCD, 18

LDR, 51

LDR imaging, 51

LED, 57

light-emitting diode, 57

lightness, 24, 107, 132, 138

liquid-crystals display, 18

LLAB, 37

local tone-mapping operators, 63

logistic psychometric model, 174

low-dynamic-range imaging, 51

luminance, 9, 27

luminance adaptation, 104, 152

luminous flux, 8

luminous intensity, 9

LUTCHI, 28, 110

LUTCHI colour appearance experiments, 25, 29

magnitude estimation, 26, 107

mantissa, 56
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matching, 25

maximum likelihood optimisation, 148

maximum photographic luminous efficacy, 11

maxRGB, 22, 86

measuring geometry, 12

mesopic vision, 28, 68

metameric matching experiments, 25

Michaelis-Menten equation, 23, 61

monochromator, 21

Naka-Rushton equation, 23

Nikon D100 camera, 81

Nikon D40 camera, 81

noise, 16

noise floor, 16

nominal scale, 26

normal-inverse function, 174

OETF, 17

OpenEXR file format, 56

opto-electronic transfer function, 17

ordinal scale, 26

pair comparison, 26

paired comparison plus category method, 168

partitioning, 107

pattern noise, 16

PCS, 12, 54

perceptual rendering indent, 51

PFM file format, 56

photodetector, 14

photography, 14

photometry, 8

photopic vision, 68

photoreceptors, 61

pigment bleaching, 23, 35

pinhole camera, 13

Planckian blackbody radiator, 86

primate cones, 23

profile colour space, 11

profile-connect space, 54

proximal field, 26

psychophysics, 25

pupil, 23

Purkinje Break, 28

Purkinje Shift, 28

quantisation noise, 16

quantum efficiency, 15

radiance, 9

Radiance file format, 55

radiant flux, 9

radiant intensity, 9

radiant power, 86

radiometry, 8

ratio, 26

RAW sensor response, 78

relative colorimetric rendering indent, 50

rendering equation, 9

reset noise, 16

RGBE file format, 55

RLAB, 31

RMS, 16

rods, 23

root-mean-squared noise, 16

sample variation, 30

Samsung TFT LCD panel, 102

saturation, 24, 25, 108, 135

saturation rendering indent, 51

scale, 25, 174

scaling, 25

scotopic vision, 68

shot noise, 16

shutter speed, 13

signal-to-noise ratio, 17

silver halide, 14

simultaneous contrast effect, 28, 123, 131, 140,

159

SNR, 17

spatially varying exposure imaging, 54

Spectralon, 87

spectrophotometer, 11

spectroradiometer, 11

sRGB color space, 11



Index 257

Stevens effect, 27, 122, 132, 140

Stevens’ Law, 25, 26

stimulus, 26

suprathreshold, 67

surround, 26, 28

thermal noise, 16

threshold, 25

Thurstone’s Law of Comparative Judgement, 26

tone mapping, 52, 57

tone reproduction, 52

Torgerson’s Law of Categorical Judgement, 26,

162, 169

von Kries chromatic adaptation, 31

Weber’s Law, 25

well, 16

white balancing, 21, 85

white noise, 16

z-score, 174

zone theory, 24


