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Abstract
The coded aperture snapshot spectral imaging (CASSI) architecture has been employed widely for capturing hyperspectral
video. Despite allowing concurrent capture of hyperspectral video, spatial modulation in CASSI sacrifices image resolution
significantly while reconstructing spectral projection via sparse sampling. Several multiview alternatives have been proposed
to handle this low spatial resolution problem and improve measurement accuracy, for instance, by adding a translation stage
for the coded aperture or changing the static coded aperture with a digital micromirror device for dynamic modulation. State-
of-the-art solutions enhance spatial resolution significantly but are incapable of capturing video using CASSI. In this paper, we
present a novel compressive coded aperture imaging design that increases spatial resolution while capturing 4D hyperspectral
video of dynamic scenes. We revise the traditional CASSI design to allow for multiple sampling of the randomness of spatial
modulation in a single frame. We demonstrate that our compressive video spectroscopy approach yields enhanced spatial
resolution and consistent measurements, compared with the traditional CASSI design.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Computer Graphics]: Image Processing and Computer
Vision—Digitization and Image Capture

1. Introduction

Hyperspectral imaging spectroscopy has been practiced broadly
to acquire three-dimensional spectral information of scenes. Many
different designs of imaging spectroscopy have been proposed and
widely used in many fields, e.g., scientific study, product inspec-
tion, aerial/satellite imaging, military applications, etc. Spectral
imagers are built with two-dimensional imaging sensors. Conse-
quently, there has been a long-lasting tradeoff between the spatial
and the spectral resolutions toward video capability. For instance,
while bandpass filter-based systems [MRK⇤13, LK14] can provide
a high spatial resolution, their spectral resolution is limited ac-
cording to the number of filters. Pushbroom spectral imagers such
as [HF13] can provide a high spectral resolution as well as spa-
tial resolution. However, both scanning approaches are limited to
static scenes due to temporal scanning and are incapable of video
spectroscopy of dynamic scenes.

Snapshot-based imaging approaches, such as coded aperture
snapshot spectral imaging (CASSI) [WJWB08, DTCL09], have
been proposed to capture spectral video of dynamic scenes. How-
ever, the fundamental tradeoff problem remains for CASSI to sup-
port only a very low spatial resolution of spectral data, compared to
conventional trichromatic imagers. Several alternatives for CASSI
have therefore been proposed to better handle this tradeoff. Kittle et
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al. [KCWB10] revised the original design [WJWB08] with a micro-
translation stage of a coded aperture mask, allowing for multiple
sampling, and Tsai et al. [TB13] utilized the same design for tem-
poral modulation for low-resolution video spectroscopy. Several
methods meanwhile employ a digital micromirror device (DMD)
for using a dynamic mask, rather than a static pattern, to enhance
spatial resolution in CASSI [WGSN13, RAA15]. However, these
solutions require multiple snapshots and thus are incapable of video
spectroscopy. Alternatively, there are several approaches that com-
bine two different types of cameras, a low-resolution hyperspec-
tral camera and a high-resolution RGB camera, to increase spatial
and spectral resolution [KWT⇤11,CDT⇤11,WXG⇤15b]. However,
these systems approximate spectral information indirectly in hyper-
spectral videos, rather than directly measuring the actual spectrum
per pixel. Furthermore, these multi-camera approaches are more
costly than conventional single camera solutions.

In this paper, we propose combining compressive coded imag-
ing and kaleidoscopic imaging, allowing for multiple sampling of
the compressive codes. A kaleidoscopic imaging configuration has
been used to capture multiple views of dynamic scenes or a large
number of views efficiently. We build an alternative CASSI sys-
tem for video spectroscopy with enhanced spatial resolution. We
developed an optical design that allows for multisampling of com-
pressive coded snapshots. The proposed design increases the sam-
pling ratio significantly while capturing hyperspectral video on a
single image sensor architecture. We reconstruct input into a four-
dimensional hyperspectral video (x,y,l, t) by solving a sparsity-
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constrained optimization problem with total variation. We demon-
strate that the proposed method improves the spatial resolution of
compressive coded imaging without sacrificing video capability
relative to the traditional CASSI design.

Our contributions are:
• a novel optical design that enables multisampling for compres-

sive video spectroscopy and

• a system implementation as a prototype to validate the design.

2. Related Work

Imaging spectroscopy has been researched extensively in recent
decades. For brevity’s sake, we refer readers to [Bra09] for back-
ground and an overview of this subject. This section exclusively
surveys dispersion-based spectroscopy in detail.

Fundamental Resolution Tradeoff. Hyperspectral imaging is a
spectroscopy technology that captures image information with an
additional dimension of spectra. Traditional hyperspectral imag-
ing systems require temporal scanning to reconstruct a three-
dimensional spatio-spectral data cube. A hyperspectral imager em-
ploys a two-dimensional imaging sensor to capture input. Since the
dimensions of the sensor are lower than those of the hyperspectral
data cube, a tradeoff between the spatial and the spectral resolution
in these systems is inevitable. Diverse optical designs and algo-
rithms have been proposed to better handle this tradeoff of spatio-
spectral information.

Filter-Based Spectroscopy. Bandpass-filter-based spectroscopy
captures a sequence of images with narrow bandpass filters [RB05]
or a liquid crystal tunable filter [LK14, NK14], coupled with a
monochromatic camera, and reconstructs a hyperspectral image
by packing spectral channels. The spectral resolution depends on
the number of filters, and the spatial resolution is determined by
the resolution of the sensor. Filter-based imaging provides high
spatial resolution but with limited spectral resolution. Since mul-
tiple channels must be captured via temporal scanning, subjects
being captured are limited to static objects. Recently, Manakov
et al. [MRK⇤13] introduced a filter-based snapshot multispectral
imaging system based on a kaleidoscope. The kaleidoscope pro-
duces N ⇥N identical copies of the original image. Each image is
filtered by a bandpass-filter with a different wavelength band. We
are inspired by this optical design of image duplication, and apply
it to compressive coded aperture snapshot imaging. Different from
Manakov et al.’s approach, we duplicate images with diverse ran-
dom apertures, allowing for multisampling of compressive coding.

Pushbroom Spectroscopy. A pushbroom-based system isolates
an image into a narrow column through a single slit, disperses each
column by a prism or a diffraction grating to mechanically scan
optical dispersion, and then packs the column-wise dispersion into
a spectral image. The drawbacks of this design are that the spatial
resolution along the mechanically moving axis is lower than that
of the other axis direction, and that these systems, like filter-based
systems, can capture only static scenes. The spatial resolution of
pushbroom-based systems is, however, higher than that of filter-
based systems. The spectral resolution is determined by the num-
ber of pixels within the range of spectral dispersion in the sensor.

Recently, Hoye et al. [HF13] presented a system by physically at-
taching a set of light mixing chambers on the slit to reduce typical
artifacts in the pushbroom architecture.

Snapshot Spectroscopy. Compared with the pushbroom- or
filter-based systems, snapshot-based systems capture a full 3D
spatial-spectral data with a snapshot and are capable of capturing
dynamic scenes. Although snapshot spectroscopy is capable of hy-
perspectral video, the technical tradeoff between spatial and spec-
tral resolution still remains as a severe problem. Snapshot spec-
troscopy also utilizes dispersion by a prism or a diffraction grating
coupled with a coded mask to reconstruct spectral information by
solving a projection problem. Gehm et al. [GJB⇤07] introduced a
pioneering snapshot spectroscopy system, so-called dual-disperser
coded aperture snapshot spectral imaging (DD-CASSI), which uses
a coded aperture to modulate spectral data. Du et al. [DTCL09] and
Wagadarikar et al. [WPSB08, WPSB09] proposed single-disperser
CASSI systems (SD-CASSI) that allow for video spectroscopy.
Rajwade et al. [RKT⇤13] developed CASSI system by using a
Bayesian implementation of blind compressive sensing. Habel et
al. [HKW12] proposed a hyperspectral imager by revising a con-
ventional camera to reconstruct spectral information via computed
tomography imaging. However, the spatial resolution of the system
is limited to 120⇥120 pixels. These snapshot-based systems suffer
from a lack of spatial resolution due to the aforementioned tradeoff.

Multi-Snapshot Spectroscopy. In order to improve spatial reso-
lution, several alternative designs have been proposed to increase
the sampling rate in CASSI. Kittle et al. [KCWB10,KHK⇤12] pro-
posed a multiple snapshot CASSI that captures many snapshots
posing a coded mask on a micro translation stage to randomly trans-
late the position of the mask. Wu et al. [WMAP11] utilized a DMD
as a programmable coded aperture to diversify the random pattern
of the coded mask. Even though these systems improve the spatial
resolution significantly compared to single snapshot approaches,
they are incapable of capturing dynamic scenes for hyperspectral
video.

Another alternative approach, a dual-camera system with a
low-resolution hyperspectral camera and a high-resolution DSLR
camera, was proposed [CTDL11, WXG⇤15b, MCWD14]. This
method propagates low-resolution spectral information to the high-
resolution pixel domain from the RGB camera by estimating pixel
similarity or a basis that represents reflectance spectra via matrix
factorization [KWT⇤11]. However, these high-resolution spectra
are approximations rather than direct measurements of actual spec-
tra.

Kaleidoscopic Imaging. Reshetouski et al. [RMSI11] proposed
calibration and imaging theory for kaleidoscopic imaging configu-
rations. They then investigated optical geometry in a room of pla-
nar mirrors [RMB⇤13]. Planar mirrors have been broadly used in
various imaging applications. For instance, a planar mirror sys-
tem was proposed for multiple views in capturing reflectance func-
tions [HP03]. A reconfigurable kaleidoscopic imaging system was
also introduced for high-dynamic-range imaging, light-field imag-
ing and multispectral imaging, which is based on bandpass fil-
ters [MRK⇤13]. To the best of our knowledge, our work is the first
to apply kaleidoscopic imaging to compressive coded imaging to
achieve high resolution in hyperspectral videos.
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Figure 1: Schematic diagram of our multisampling compressive coded imaging. An initial hyperspectral image f passing an objective lens is
duplicated by first-surface mirrors and modulated by different coded aperture masks T= [T1,T2, · · · ,Tk] to coded images f1 = [ f 1

1 , f 1
2 , · · · , f 1

k ].
f1 is then dispersed as a shear spectral function f2 = [ f 2

1 , f 2
2 , · · · , f 2

k ], and projected to a monochromatic sensor g = [g1,g2, · · · ,gk].

3. Multisampling Compressive Spectroscopy

We were motivated to capture hyperspectral video with enhanced
spatial resolution. We built our CASSI system design from scratch
but extended the compressive design toward multiple sampling to
enhance the spatial resolution of traditional CASSI without sacri-
ficing video capture capability. We begin by describing the founda-
tions of compressive imaging, followed by our design.

3.1. Compressive Imaging with Multisampling

Let us define the spectral intensity of light in a frame as a function f
of wavelengths l and spatial locations (x,y). The input image with
continuous spectra f , shown on the left in Figure 1, is duplicated
into k instances of f 0

k images

f = [ f 0
1 , f 0

2 , · · · , f 0
k ],

where the initial image f on a diffuse screen is multiplied by four
first-surface mirrors. See Section 4.1 for details of optical imple-
mentation.

Each duplicated image f 0
k is filtered by a different coded aper-

ture transmission function Tk(x,y), respectively. Note that the ran-
dom mask functions T = [T1,T2, · · · ,Tk] are different while the du-
plicated f 0

k images are identical. The modulated spectral density
function f1 = [ f 1

1 , f 1
2 , · · · , f 1

k ] via the coded aperture T is computed
by a product:

f 1
k (x,y,l) = f 0

k (x,y,l)Tk(x,y) .

A prism disperses the duplicated coded images f1 along a horizon-
tal axis. The length of dispersion of a wavelength l can be obtained
from the calibration of dispersion as a function of f(l), which de-
scribes the amount of pixel shift with respect to wavelength l. We
can describe the spectral density f 2

k after the diffraction grating as

f 2
k (x,y,l) =

ZZ
d(x0− [x+f(l)])d(y0− y) f 1

k (x
0,y0,l)dx0dy0

=
ZZ

h(x0−f(l),x,y0,y,l) f 1
k (x

0,y0,l)dx0dy0,

where h describes the two-dimensional dispersion of f(l) via the
prism as a combined function of two Dirac delta functions d(x0−
[x+f(l)])d(y0− y).

The detector array only measures the intensity of the light rather

than the spectral density. The intensity of a position (x,y) is inte-
gration over a set of wavelengths L in the k-th duplication:

gk(x,y) =
Z

L

ZZ
h(x0−f(l),x,y0,y,l) f 1

k (x
0,y0,l)dx0dy0dl

=
Z

L

ZZ
h(x0−f(l),x,y0,y,l)Tk(x,y) (1)

⇥ f 0
k (x

0,y0,l)dx0dy0dl.

Suppose we have an image sensor that pixelates the light intensity
as a two-dimensional array of a pixel size D. We can rewrite the
discrete pixel intensity g at a position (i, j) in the k-th duplication
as:

gi jk =
ZZ

gk(x,y)rect
⇣ x

D
− i,

y
D
− j

⌘
dxdy,

=
ZZ Z

L

ZZ
h(x0−f(l),x,y0,y,l)Tk(x,y) (2)

⇥ f 0
k (x

0,y0,l)rect
⇣ x

D
− i,

y
D
− j

⌘
dx0dy0dldxdy.

In the same manner, the coded aperture mask Tk(x,y) can be for-
mulated as a set of discrete pinholes Ti0 j0k with a pixel size of D0:

Tk(x,y) = Â
i0, j0

Ti0 j0krect
⇣ x

D0 − i0,
y
D0 − j0

⌘
. (3)

We can substitute Tk(x,y) in Equation (2) with Equation (3):

gi jk = Â
i0, j0

Ti0 j0k

ZZ Z

L

ZZ
h(x0−f(l),x,y0,y,l)

⇥ rect(
x
D0 − i0,

y
D0 − j0)

⇥ f 0
k (x

0,y0,l)rect(
x
D
− i,

y
D
− j)dx0dy0dldxdy.

(4)

Now we can rewrite the above equation in a matrix-vector form.
Suppose the captured input image of k duplication, is g 2 Ri jk. A
hyperspectral image function f 0

k (x
0,y0,l)rect( x

D − i, y
D − j) of k du-

plication with l number of wavelengths is f 2 Ri jl . The projection
of the spectral dispersion function h(x0− f(l),x,y0,y,l)rect( x

D0 −
i0, y

D0 − j0) combined with the compressive coded mask T can be
presented as a non-negative and binary matrix H 2 Ri jkl⇥i jl . Now
we can rewrite the entire process of spectral dispersion and projec-
tion as the product of H and f:

g = Hf. (5)
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Figure 2: Optical path in our hyperspectral imager. An objective lens (left) forms an image on a diffuse screen. This image is duplicated
as an array of 3-by-3 images by four first-surface mirrors and projected to a coded aperture (middle). The duplicated images with different
coded masks are collimated and transformed to a monochromatic sensor (right) via a prism.

3.2. Spectral Reconstruction

State-of-the-art CASSI systems find an optimal solution to the ill-
posed inverse problem of reconstructing input spectra by using an
expectation maximization with total variation [GJB⇤07, WJWB08,
KCWB10, WMAP11] or learning an over-complete dictionary via
sparse representation [LWLD14, LLWD14, PMX⇤14, WXG⇤15b,
SHG⇤16]. The foundation of our reconstruction workflow follows
the traditional reconstruction of CASSI using a total variation (TV)
regularizer. Our reconstruction problem of multisampling hyper-
spectral channels is to seek f that can minimize kg−Hfk2

2. We for-
mulate the reconstruction as a Lagrangian relaxation problem of a
constrained optimization:

min
f

1
2
kg−Hfk2

2 + tG(f), (6)

where t is set to around 0.1 in our experiments. We solve this data
term with the TV-L1 regularizer. We compute an isotropic L1 norm
G(f) of variation in the horizontal and the vertical axis of the spec-
tral data cube [BDF07]:

G(f) =Âl Âi, j{|f(i+1, j, l)− f(i, j, l)|

+ |f(i, j+1, l)− f(i, j, l)|}.
(7)

Since the L1 norm is known to be robust, and it enforces the spar-
sity of the gradients of f, we select the L1 norm over the L2 norm
to find a robust and smooth solution. We sum the spatial variations
of the horizontal and vertical axes within the spectral data cube.
Note that while calculating the total variation, spatial smoothness
is considered explicitly without spectral smoothness, thereby al-
lowing steep gradient changes along the spectral axis.

4. System Implementation

This section describes technical details for implementing our sys-
tem prototype of 4D hyperspectral video spectroscopy.

4.1. Kaleidoscopic Imaging in CASSI

Geometric Optics. The design of our system originates from a
single disperser architecture with a coded aperture of CASSI pro-
posed by Wagadarikar [WJWB08]. Figure 2 shows a schematic dia-
gram of light transport in our system. A conventional objective lens
forms an image on a diffuse screen, which is surrounded by four
first-surface mirrors to duplicate the image. The duplicated images
are then relayed to a coded aperture mask for spatial modulation.
The compressed rays are collimated to be dispersed by a prism.
Note that the collimating step should be placed prior to the disper-
sion to avoid inconsistent focusing among wavelengths. The last

a

f

b

al bl

Figure 3: The ratio of image minification is determined by the
length of the mirrors a and focal length b.

relay lens focuses the dispersed light on an image sensor. The cap-
tured light is the projection of the sheared spectrum of a scene (re-
fer to Section 3.1). In summary, our novel optical design with im-
age duplication allows for multiple sampling of randomness of the
coded aperture to enhance spatial resolution with benefits of com-
pressive coded aperture snapshot imaging for video spectroscopy.

View Multiplication. Once an objective lens forms an image on a
diffuse screen, four surrounding first-surface mirrors duplicate the
image on a virtual plane at the same focusing distance parallel to
the diffuser. The duplicated 3 ⇥ 3 views of the diffuser are then
compressed to the size of the image sensor. The minification ratio
of copied images m = lb/la is determined by the horizontal length
of the mirrors a and the focal length f of the relay lens (see Fig-
ure 3):

m =
b
a
=

1
a/ f −1

s.t.
1
a
+

1
b
=

1
f
.

For image multiplication, we built a four-sided kaleidoscope in di-
mensions of 24⇥24⇥240 mm with four first-surface mirrors from
Edmund Optics and a mirror holder created by a 3D printer.

Geometric Calibration. Misalignment of the mirrors introduces
perspective distortion of copied images. To solve the misalignment
problem, we performed geometric calibration on captured views,
following Manakov et al. [MRK⇤13]. Capturing a checkerboard al-
lows us to estimate homographies between duplicated views and
the original view using corresponding points of the checkerboard.
By warping the copied views with the estimated homographies,
all views can be aligned with respect to center view coordinates.
This geometric calibration is independent of the scene because op-
tical distortion occurs after objective image formation. Note that
the halves of the duplicated views, on the main diagonal and anti-
diagonal excluding the center one, are duplicated from their hor-
izontal neighbors, and the other halves come from the vertical
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Figure 4: Hardware prototype of our hyperspectral imager. For actual operation we fully encapsulate the entire system by a 3D-printed
cover hood to block interfering light.

(a) monochromatic light (550nm) (b) dispersed image (400-700nm) 

Dispersion 
direction 

Figure 5: (a) A multiview image of a printed letter at a wavelength
of 550 nm. Neighboring views are flipped vertically and horizon-
tally. (b) The dispersion direction of the first and the third columns
is from the blue (left) to red light (right), which is opposite to the
direction of the second column.

neighbors. For instance, the top-left view is a mixture of the top-
mid and mid-left views. Since these views suffer from black diago-
nal line artifacts, which originate from the gap between two orthog-
onal first-surface mirrors (see Figure 5a), we use five views for our
experiments, the original center and its four directly neighboring
views.

We adjust the minification ratio of mirrors to configure 3⇥3
views of duplication. Figure 5 shows flipped duplication by mir-
rors. These changes of view orientations are initially calibrated by
calculating a homography transform per each view gk. This ini-
tial transformation registers duplicated views to the center view g0
in Equation (5). We then refine per-pixel registration in gk by ap-
plying optical flow [Liu09]. Figure 5(a) presents a captured image
of multiple views. Figure 5(b) shows direction changes of spectral
dispersion in multiple views, following the kaleidoscopic imaging
theory [RMSI11]. Our homography transformations include these
direction changes of spectral dispersion.

Dispersion Directions. One of the insights of our optical design is
that our mirror configuration diversifies the directions of dispersion
of the coded aperture. The Hk matrices in Equation (5) are flipped
along the vertical axis, as shown in Figure 5. This allows more
robust reconstruction of the horizontal dispersion while solving the
inverse problem.

4.2. Radiometric Calibration

The camera response function of our hyperspectral imager can be
described as the linear product of the sensor’s quantum efficiency q

(a) (b) 

Figure 6: Overcoming the diffraction limit. (a) presents the raw
capture of the aperture, and (b) shows the result of the deconvolu-
tion method.

and the overall light efficiency e of the optical system. We then de-
fine the reconstructed signals f of each wavelength in Equation (6)
as f = qel , where l is the radiance measured by the system. By de-
termining a linear transformation c = (qe)−1, we can convert raw
signals f to incident radiance l. To derive this calibration model, we
captured and measured 24 colors in a standard color target (X-rite
ColorChecker) to regress model coefficients using least squares.
The multiplication of c and f yields physically-meaningful radi-
ance l from the reconstructed signals f.

Once we obtain a hyperspectral radiance map, we convert it to
sRGB color vectors to visualize visible spectral information as an
sRGB color image. We first project spectra l to tristimulus values
of CIEXYZ using the CIE color matching functions MXY Z of 2-
degree observation [CIE86] following [KRf⇤14]. We then trans-
form the tristimulus values to sRGB color vectors s using the stan-
dard sRGB transform MsRGB [NS98]: s = MsRGBMXY Z l. Finally,
we apply a white balancing algorithm [Buc80] to s via gamma cor-
rection (g=2.2) to obtain sRGB color images.

4.3. Technical Specifications

We implemented our design as the prototype shown in Figure 4.
Our system consists of four lenses, four first-surface mirrors, a dif-
fuse screen, a coded mask, a prism, and a monochromatic camera.
This section provides technical specifications for hardware imple-
mentation.

Coded Aperture. A pixel in the coded aperture with random bi-
nary patterns corresponds to two-by-two pixels of the CCD cam-
era, PointGrey Grasshopper 3 (9 megapixels with the resolution of
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Image 1 view 2 views 3 views 5 views 
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

CD 18.88 0.66 25.66 0.83 28.42 0.87 31.07 0.90 
Balloons 25.48 0.85 25.90 0.84 28.96 0.89 31.10 0.91 
Sushi 21.81 0.61 23.62 0.71 24.66 0.73 26.35 0.80 
Toy 18.00 0.65 23.17 0.75 23.11 0.75 24.29 0.78 
Face 17.55 0.59 19.22 0.66 19.84 0.69 19.95 0.71 
Lemon 13.98 0.41 16.43 0.52 17.41 0.56 18.22 0.60 
Beer 23.33 0.86 26.81 0.89 26.52 0.90 28.18 0.91 
Egyptian 20.69 0.64 22.44 0.72 22.67 0.75 23.02 0.77 
Beads 13.17 0.27 16.15 0.38 16.96 0.42 17.87 0.47 
Chart 19.97 0.63 22.56 0.69 22.85 0.71 23.88 0.75 
Strawberry 19.13 0.63 19.67 0.67 19.67 0.68 19.37 0.69 
Average 19.27 0.62 21.97 0.70 22.82 0.72 23.94 0.75 

(c) 

Figure 7: Comparison of hyperspectral images (a) and spectral measurements (b), synthetically reconstructed with different numbers of
input views. The PNSRs of the reconstructed results from 1/2/3/5/9 views are 15.93/18.62/18.99/20.96/24.96. (b) compares the measurement
accuracy of our method on the red and cyan patches by varying the number of input views. (c) compares the averaged radiance differences
between the reference and the reconstruction of the red and cyan patches as the number of views increases. (d) compares the PSNRs and
SSIMs between the reference [YMIN08] and the synthetically reconstructed hyperspectral images with different numbers of views. We used
t = 0.15, and took 50 iterations for TV-L1 optimization.

3376⇥2704). The spatial resolution of the mask patterns is criti-
cal to that of the output spectra. Although smaller features would
yield a higher resolution, we also must consider the diffraction ef-
fect with smaller features. Owing to the diffraction limit of the sys-
tem, the coded aperture is blurred, as shown in Figure 6(a). In order
to overcome the diffraction effect, we apply the Richard-Lucy de-
convolution method [Luc74] to the captured coded aperture mask
image. This deconvolved image is used to build a matrix H in Equa-
tion (6). The radius of the Airy disk kernel R is calculated by

R = k
Ll
d
, (8)

where L is the distance from the camera aperture to the sensor
plane, l is the wavelength of light and d is the diameter of the
camera aperture, and the constant k = 1.22 accounts for the shape
of our circular aperture. The estimated radius of the diffraction pat-
tern in visible spectra is ⇠6.10 µm, which is larger than the sensor
pitch ⇠3.69 µm. The PSF radius in our system is ⇠1.65 pixel. The
overall transmittance of this coded mask is ⇠50% as 50% of the
mask area is occluded by chrome mask on quartz, where the pixel
pitch of the coded mask is 7.40 µm.

Spectral Dispersion. We mount a UV-IR cut filter to select in-
cident spectral energy, wavelengths ranging between 450nm and
700nm. A solid-state plasma light source (Thorlabs HPLS-30-04)
was used as a light source. Suppose we target reconstruction of
about 30 wavelength channels of 10 nm intervals from a 2:1 ratio of
the mask and the sensor pixel sizes in our system. The pixel range

of spectral dispersion must span at least 60 pixels for visible spec-
tra from 450 nm to 700 nm. We choose a prism made of BK-7. The
refractive index of the material is 1.5168. To fit our measurement
goal, we fabricate the apex angle of the prism as 17 ◦.

Diffuse Screen. We installed a diffuse screen at the focal length
of the objective imaging lens to duplicate an image with four neigh-
boring mirrors. We tested three types of diffusers: a ground glass
and an opal and a holographic diffuser. The ground glass diffuser
degrades image quality by grain and the opal diffuser shows very
low transmittance. We therefore decided to use a holographic dif-
fuser, the transmittance of which is specified as ⇠85% (Edmund
Optics holographic diffuser #55-440).

Objective and Relay Lenses. We install a Coastal Optics 60 mm
f /4 UV-VIS-IR lens as an objective lens that is apochromatic from
approximately 315 nm to 1.1 µm. We employ three Nikon lenses for
optics relaying and imaging. In particular, the second lens from the
left serves as an imaging lens, and the third one functions as a col-
limating lens by configuring the focal distance to infinity in these
lenses. The ratio of the focal lengths of these lenses determines the
zoom factor of our imaging system. We use the lenses of the same
focal length of 50 mm to preserve 1:1 imaging.

5. Results

In this section, we validate our multisampling compressive video
spectroscopy by presenting a series of quantitative and qualitative
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Figure 8: (a) The traditional CASSI system [WJWB08] synthesized with a full-frame input (1935⇥1503), which has a nine times larger
resolution than that of a view (645⇥501) in our multiview configuration. (b) a reconstruction result using a single view of the multiview
configuration. (c) and (d) compare spectral reconstruction results using five different views that we use with our prototype. (c) shows a
reconstruction result without dispersion inversion (see Figure 3b), while (d) presents a reconstruction results with dispersion inversion. The
five-view reconstruction with dispersion inversion improves not only PSNR but also SSIM of spectral channels.
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Figure 9: We compare the reflectances of color patches in a ColorChecker target measured by a spectroradiometer (Jeti Specbos 1200),
a traditional CASSI system [WJWB08] and our system. (a) shows a hyperspectral image of the target captured by the traditional CASSI
system. (b) shows a hyperspectral image captured by our system. (c), (d) and (e) compare the reconstructed spectral reflectance of the blue,
the green and the red patch in the target using three instruments. Even though our system’s spatial resolution is lower than the traditional
CASSI system, the accuracy of spectral reconstruction is significantly improved in our system.

analysis of experiment results. The experiments include evaluations
via synthetic hyperspectral images and via real images captured
by our imager. We reconstructed hyperspectral video footage using
non-optimized Matlab codes. The reconstruction process for one
frame (645⇥501) took approximately 200 seconds by a machine
with an Intel i7-3770 CPU 3.4 GHz with 32 GB memory. Refer to
the supplemental video for video results.

Reconstruction Accuracy. Here we validate the effectiveness of
our multisampling design by simulating the reconstruction process,
described in Section 3, with hyperspectral image datasets of the
real world [YMIN08, CZ11]. The reference images are scaled to
the same size as the employed sensor resolution. The active sensing
area is segmented to nine views. We compare reconstruction results
from five different multisampling configurations of 1/2/3/5/9 views
with the reference hyperspectral image in terms of the peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) [WBSS04].

Figure 7 validates that our multisampling design improves not
only the spatial resolution (a) but also the accuracy of spectral
measurements (b), as we increase input randomness. Figure 7(b)
compares the differences between the reference measured by a cali-
brated spectroradiometer (Jeti Specbos 1200) and the reconstructed

spectral reflectance over the red and the cyan patch, varying the
number of input views. Figure 7(c) shows the averaged differences
between the reference and the reconstructed radiance over the red
and the blue patch. This experiment validates that as the number
of input frames increases, the accuracy of the reconstructed hy-
perspectral images increases consistently. We also test the perfor-
mance of our multisampling approach with 11 reference hyperspec-
tral images [YMIN08] by comparing the reference and the recon-
structed images. See Figure 7(d). The averaged PSNRs and SSIMs
of reconstructed hyperspectral channels are improved consistently
as the number of input views increases.

Multiview Tradeoff. The proposed method produces multiviews
on a camera sensor by segmenting the sensing area into nine
windows of 3⇥3 views. This means that we utilize nine times
more samples than a single-frame CASSI in theory. On the other
hand, this design reduces the spatial resolution of the recon-
structed image (645⇥501) by 1/9th, compared to the traditional
CASSI [WJWB08] (1935⇥1503) with the same hardware re-
sources. Now we compare the two different design configurations
under the same resources.

Figure 8(a) shows a hyperspectral image, synthetically re-
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(a) input signals (b) reconstructed hyperspectral video 

Figure 10: We captured hyperspectral video footage using our prototype. (a) shows the raw input of a single frame, where the yellow
rectangles indicate the subviews that we used for reconstruction. (b) presents the sRGB color visualization of the reconstructed spectral
channels from 450 nm to 700 nm in 10 nm intervals. The right-most image array presents the spectral power distributions of each wavelength
in the video footage. Refer to the supplemental video for more results.

1 view 2 views 

5 views 3 views 

Figure 11: Reconstructed hyperspectral video footage with 1/2/3/5
multiviews, captured by our prototype.

constructed from a single image input of a traditional CASSI
method [WJWB08]. The image resolution in the tradition CASSI
is nine times higher than that of our nine-view configuration, while
the remaining optical configurations such as the dispersion power
are the same. Figure 8(b) presents a reconstruction result using a
single subview among nine duplications in our method. Since the
resolution of the input image is reduced by nine times compared
to the original, it is not surprising that our reconstruction using a
single view is worse than the full-frame reconstruction.

As shown in Figure 3(b), the spectral dispersion of these columns
is inverted due to the design of kaleidoscopic imaging after image
registration. We conduct a simulation to compare this effect of dis-
persion inversion in reconstructing the spectrum. Figures 8(c) and
(d) compare results reconstructed from the five subviews without
and with dispersion inversion. It is worth noting that although the
number of input subviews is the same, the spatial resolution with
dispersion inversion increases relatively in terms of the PSNR and
SSIM of reconstructed hyperspectral channels. The configuration
presented in Figure 8(d) is the one that we finally chose for our
system implementation.

We implemented the traditional CASSI method [WJWB08] and
the optical design described in Section 3.1 as our system proto-
type (Section 4). Note that we implemented both systems using the
same hardware configuration just except the kaleidoscope unit. The
traditional CASSI system captures images with nine times higher
resolution than our proposed imaging system of nine subviews. Fig-
ure 3 shows a photograph of the system prototype. Figures 9(a) and
(b) compare the hyperspectral images captured by the two imaging
systems. It is not surprising that the traditional CASSI can provide a
higher spatial resolution than the proposed method. However, com-
paring the reconstructed spectral resolutions from both systems, the
spectral reflectance captured by our multisampling imager is signif-
icantly more accurate than the traditional CASSI system with the
same hardware resource. Figures 9(c), (d) and (e) compare spectral
reflectances of the blue, the green and the red patch, measured by
both systems, with respect to reference measurements (Jeti Specbos
1200 spectroradiometer).

Figure 10 presents a hyperspectral video footage of a moving
object of a color wheel. Refer to the supplemental video for more
results. Figure 10(a) shows an example of a raw input frame for
hyperspectral video captured by the system prototype (10 FPS).
Among nine multiviews we choose five clean views as input for
spectral reconstruction due to diagonal artifacts. The yellow rectan-
gles indicate the used frames. We then reconstruct them as a frame
of the hyperspectral video footage, which contains per-pixel spec-
tra in the 4D hyperspectral video footage (x,y,l, t). Figure 10(b)
presents visible color visualization converted from reconstructed
hyperspectral data. The right-hand-side array of photographs shows
individual spectral channels. Figure 11 compares the quality of
the reconstructed videos with different numbers of multiviews. We
quantitatively evaluated the measurement accuracy by comparing
our image-based measurements with spectroradiometer measure-
ments. For instance, the measurement differences of the red sec-
tor in Figure 11 between our system and the spectroradiometer de-
creases by 21, 19, 18, and 10 in DE⇤

00 gradually as we increase
the number of input views. Figure 12 compares more hyperspectral
video footage captured by our prototype. Refer to the supplemental
video for more results.
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Figure 12: We captured hyperspectral video footage using our system prototype. This figure presents measured reflectances, sRGB color
images and spectral channels of moving objects. Refer to the supplemental video for more results.
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6. Discussion

We discuss a range of observations made throughout the develop-
ment of our system and the acquisition of a variety of test scenes.

Tradeoff between Spatial and Spectral Resolution. Filter-
based approaches [MRK⇤13] provide high-spatial resolution, but
their spectral resolution is limited. Compressive imaging ap-
proaches [LWLD14,LLWD14] including the proposed method pro-
vide high-spectral resolution, but their spatial resolution is limited.
This is a long-lasting tradeoff between spatial and spectral reso-
lution in hyperspectral imaging. Many approaches to solving this
tradeoff [KCWB10, WMAP11] by combining multiple sampling
and compressive imaging have been proposed. Compressive imag-
ing principles stand on sparsity, randomness, and convex optimiza-
tion. The solution of this problem that we propose is multiple sam-
pling of the randomness of sparse modulation of the spectrum us-
ing kaleidoscopic imaging. The proposed method accommodates
multiple sampling and video imaging. We demonstrate increased
sampling of randomness is beneficial to enhance spectral resolu-
tion significantly, despite that we utilize the entire sensor resolution
partially as segments via a kaleidoscope.

Randomness of the Coded Mask. Regarding compressive sens-
ing, it is well documented that randomness leads to an effective
sensing mechanism in reconstructing sparsely sampled signals. We
create random patterns by lithographically etching a quartz sub-
strate with an active area of 25 mm square, where a pixel on the
mask corresponds to 2-by-2 pixels on a sensor. The key insight is
that the randomness provides incoherence in sampling sparse sig-
nals, which is crucial for sparsity-based optimization such as total-
variation or sparse coding. In the compressive sensing field, random
sensing is practiced as a near-optimal strategy.

Hardware Assembly. As shown in our experimental results, the
spatial resolution captured by our prototype is noticeably lower
than the synthetic results. We found that building the prototype re-
quires sophisticated alignment of optical components including the
coded aperture, the four mirrors, the prism, and the camera along
the optical path. The diffraction effect through the coded mask and
lens distortion, which is not present in the synthetic experiments,
hindered sharp reconstruction of captured spectra. We notice that
the misalignment of copied views gives rise to a critical reconstruc-
tion problem. Although the misalignment can be solved by image
registration, the dispersion directions of each view are different due
to misaligned orientation of views. Distortion of dispersion direc-
tions breaks the transformation matrix and corrupts the hyperspec-
tral image reconstruction. Also, focusing on the coded mask con-
tributes to the quality of reconstructed images. Since fine focusing
requires perfect lenses and high precision positioning, we obtain a
slightly blurred image of the coded mask.

Implementation of Kaleidoscope. Designing a system to use
nine views originally, we found that even small corner seams near
four edges of the mirrors hindered reconstruction of sparse infor-
mation, as shown in the diagonal views in Figure 5(a). Owing to
this issue in fabricating the mirror holder, we omitted these cor-
ner views from multiple sampling in the system. However, a more
elaborately fabricated mirror holder would solve this problem.

Light Efficiency. In traditional CASSI systems, the coded mask

occludes 50% of incident light to yield spatial modulation. In state-
of-the-art imaging systems with multiple cameras [WXG⇤15a,
WXG⇤15b], a beam splitter is necessary to divide incident light
into two directions with a further 50% loss, i.e., this configuration
leads to a combined 75% loss of incident energy on the camera
equipped with the coded aperture. In contrast, our mirror-based
multisampling approach enhances spectral resolution with a cost
of only 15% loss of incident energy by the diffuser.

TV-L1 Optimization vs. Sparse Coding. Traditional CASSI re-
construction methods [GJB⇤07, WJWB08, KCWB10, WMAP11]
formulate the reconstruction problem as an inverse problem that
minimizes kg−Hfk2

2 with TV-L1 including our method (refer
to Equation (6)). Recent reconstruction methods using sparse rep-
resentation such as [LWLD14,LLWD14,PMX⇤14,WXG⇤15b] for-
mulate this problem as minimizing kg−FDak2

2, where F is a
projection matrix, D is a 3D spatio-spectral dictionary, and a is
a corresponding sparse code vector. This over-complete dictio-
nary D is learned from a large set of 3D spatio-spectral patches.
While the former methods solve the optimization problem with a
global spatio-spectral matrix H, the latter approaches solve the lo-
cal optimization problems with a large set of independent spatio-
spectral dictionaries. These sparse coding-based approaches re-
quire many hours for training and even reconstruction; e.g., it takes
25 hours to reconstruct an image of 374⇥502 pixels by a state-
of-the-art method [LLWD14]. Since we are targeting video appli-
cations of spectroscopy, we were motivated to choose the tradi-
tional reconstruction approach with consideration of computational
cost. We tested five methods: TWIST [BDF07], GPSR [FNW07],
NeARest [SP08], SpaRSA [WNF09], and a sparse coding ap-
proach [LWLD14]. We chose TWIST because it is the most effi-
cient and accurate. In future work, we would like to apply a sparse
coding-based approach to solving the optimization problem.

7. Conclusions

We have presented a novel camera system for compressive imaging
to measure hyperspectral video. We make a tradeoff between multi-
sampling (beneficial for spatial and spectral resolution, which hin-
ders video acquisition) and snapshot-based design (beneficial for
hyperspectral video acquisition, which suffers from low spatial
resolution) by combining a coded aperture and a kaleidoscope to
achieve high spatial and spectral resolution in hyperspectral videos.
Specifically, we provide insights for coupling multisampling and
compressive imaging, offering physically-meaningful acquisition
of hyperspectral video. We validated the effectiveness and con-
sistency of our system qualitatively and quantitatively. Finally, we
have provided a range of building experience and potential direc-
tions for compressive video spectroscopy.
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