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Abstract

Omnidirectional cameras are extensively used in various
applications to provide a wide field of vision. However,
they face a challenge in synthesizing novel views due to
the inevitable presence of dynamic objects, including the
photographer, in their wide field of view. In this paper,
we introduce a new approach called Omnidirectional Lo-
cal Radiance Fields (OmniLocalRF) that can render static-
only scene views, removing and inpainting dynamic ob-
jects simultaneously. Our approach combines the princi-
ples of local radiance fields with the bidirectional optimiza-
tion of omnidirectional rays. Our input is an omnidirec-
tional video, and we evaluate the mutual observations of
the entire angle between the previous and current frames.
To reduce ghosting artifacts of dynamic objects and inpaint
occlusions, we devise a multi-resolution motion mask pre-
diction module. Unlike existing methods that primarily sep-
arate dynamic components through the temporal domain,
our method uses multi-resolution neural feature planes for
precise segmentation, which is more suitable for long 360◦

videos. Our experiments validate that OmniLocalRF out-
performs existing methods in both qualitative and quanti-
tative metrics, especially in scenarios with complex real-
world scenes. In particular, our approach eliminates the
need for manual interaction, such as drawing motion masks
by hand and additional pose estimation, making it a highly
effective and efficient solution.

1. Introduction
Omnidirectional cameras such as Ricoh Theta or Insta360
allow capturing panoramic 360◦ views in a single shot.
Various applications with omnidirectional images such as
spherical depth estimation [53, 58, 59], novel view syn-
thesis [2, 3, 5–7, 11, 18, 31, 35] and geometry reconstruc-
tion [3, 18] aiming at large-scale static scenes have recently
been explored. In particular, synthesizing 360◦ novel views
can provide continuous views from unobserved camera an-
gles while maintaining its details.

However, recent novel view synthesis methods struggle
to apply to omnidirectional input for the following reasons.
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Figure 1. We introduce omnidirectional local radiance fields for
photorealistic view synthesis of static scenery from 360◦ videos.
Our method effectively removes dynamic objects (including the
photographer) without manual interaction. Also, it achieves high-
resolution details in the inpainted regions by means of bidirec-
tional observations of omnidirectional local radiance fields. Refer
to the supplemental video for more results.

When capturing omnidirectional videos to record static en-
vironments, dynamic objects are prone to be captured as
an extension of the field of view, and capturing a photog-
rapher is inevitable unless employing a dedicated hardware
or remote controller. When synthesizing novel views, these
captured objects are represented as ghosting artifacts onto
the rendered results [37]. Despite these problems, existing
methods have achieved 360◦ view synthesis, relying on con-
strained capturing conditions, where it minimizes the ad-
vent of dynamic objects [3, 11] or requiring dedicated hard-
ware [5–7, 31, 35], which are not suitable for casual 360◦

photography.
Low-rank decomposition through robust principal com-

ponent analysis [15, 16, 57] and existing optimization-
based methods [13, 14] effectively eliminate dynamic ob-
jects on the image domain. However, their applicabil-
ity is limited to scenarios involving multiple images cap-
tured from the same viewpoints. Recent view synthesis



works [32, 33, 46, 54] detach dynamic objects during static
view synthesis by modeling dynamic objects along the tem-
poral domain. However, they are inappropriate for long
360◦ videos because of the neural model’s capacities.

In this paper, we propose omnidirectional local radi-
ance fields (OmniLocalRF) that can render novel views
of static scene environments from casual dynamic 360◦

videos. We formulate local radiance fields (LocalRF) [26]
into a novel bidirectional training scheme designed explic-
itly for omnidirectional video input. We develop a mod-
ule that uses multi-resolution neural feature planes to pre-
dict motion masks of every frame and segment frame-
dependent components. Our LocalRF-based approach en-
ables us to synthesize views and estimate camera poses
from long videos. We automatically remove and inpaint dy-
namic objects while performing large-scale omnidirectional
view synthesis. See Figure 1.

It is worth noting that different from conventional per-
spective cameras, omnidirectional cameras capture con-
tinuous scene information across multiple frames. This
unique characteristic allows us to design a novel opti-
mization approach that involves the bidirectional evalua-
tion of samples taken from distant frames through an om-
nidirectional contraction scheme. This method enables
us to effectively remove and inpaint broken dynamic ob-
jects through backward refinement, demonstrating omnidi-
rectional reconstruction and decoupling of dynamic objects
across complex real-world scenes. In summary, our contri-
butions are:

• A view synthesis method based on bidirectional opti-
mization through distant frames while conserving lo-
cality across radiance fields,

• A new motion mask prediction module that accurately
segments dynamic objects, even in 360◦ videos with-
out requiring a pretrained model, and

• A camera pose estimation technique based on local
view synthesis of 360◦ videos.

Our code is freely available for research purposes1.

2. Related work

Omnidirectional view synthesis. OmniPhotos [3] and
Jang et al. [18] reconstruct geometry from 360◦ videos us-
ing mesh representation. Several approaches [5–7, 31, 35]
use a spherical camera rig to render images at unobserved
camera positions. MatryODShka [1] proposes a multi-
sphere image representation for omnidirectional view syn-
thesis. However, these methods do not work for 360◦ videos
casually taken with dynamic objects.

Recent advancements for rendering 360◦ images,
e.g., Mip-NeRF360 [2] and EgoNeRF [11], use vol-
ume rendering to create omnidirectional images. Mip-

1https://vclab.kaist.ac.kr/cvpr2024p1/

NeRF360 extends the capabilities of Neural Radiance
Fields (NeRF) [27] to unbounded scenes, while EgoNeRF
uses the Yin-Yang grid to obtain a balanced polar represen-
tation of neural features. However, these methods limit use
in scenarios with dynamic objects in the training dataset,
as they are designed for egocentric scenes captured using a
selfie stick or by excluding dynamic objects with a motion
mask.

Removing dynamic objects. Novel view synthesis meth-
ods generally aim to reconstruct static objects through the
multi-view stereo [2, 27, 43, 47]. In existing works, separat-
ing dynamic and static objects by pretrained model [9, 17]
on input images and modeling them respectively enables
rendering static geometry if multi-view of dynamic objects
are sufficiently provided in a dataset [21, 25, 32, 33]. In
360◦ videos that do not provide enough multi-view cues
of dynamic objects, modeling them across the 3D space is
challenging due to geometric inconsistency over time.

To reduce ghosting artifacts caused by dynamic objects
in view synthesis, several models [36, 43] exclude dy-
namic objects using an external segmentation model [9, 10].
However, these models fail to mask out objects that are
not labeled, such as shadows. Recent works, such as
D2NeRF [54] and Neuraldiff [46], segment dynamic objects
by reconstructing them in 3D space across the temporal
domain, but require an extensive parameterization, making
them less scalable for long 360◦ videos. OmnimatteRF [24]
estimates delicate motion masks from rough masks pro-
vided by Mask R-CNN [17] with optical flow [45], but still
needs a pretrained segmentation model. RobustNeRF [37]
discriminates between inliers and outliers based on photo-
metric error and down-weights the outliers to decrease the
effect of dynamic objects during training. Nevertheless,
using a limited number of ray samples driven by down-
weighting outliers slows down the training procedure, and
these models are not scalable for long 360◦ videos.

Pose estimation. Conventional view synthesis relies on
Structure from Motion (SfM) methods, like COLMAP [38]
and OpenMVG [29], for camera poses, but these can be
challenging to compute for large-scale data, leading to poor
view synthesis quality. Several NeRF variants [4, 19, 23,
51] optimize radiance fields and poses jointly, but struggle
to estimate camera poses for 360◦ videos with dynamic ob-
jects [26]. RoDynRF [25] uses Mask R-CNN to separate
dynamic and static components, but it is not scalable and
requires a pretrained segmentation model. LocalRF [26]
succeeds in long trajectory pose calibration but is suscep-
tible to artifacts caused by dynamic objects.

3. Omnidirectional Local Radiance Fields

Overview. Our goal is to generate photorealistic static
scenes from unobserved viewpoints using long 360◦ videos,



including dynamic objects as input. We optimize multiple
radiance fields with continuous local frames while sliding
frame windows and produce high-quality view synthesis.
However, training blocks solely with local frames can result
in ghosting artifacts from dynamic objects. To address this,
we use an omnidirectional local radiance fields approach
and a motion mask module to separate dynamic and static
objects. We also propose a novel bidirectional optimiza-
tion method to enhance the stability of static structural rep-
resentations and eliminate residual artifacts. Our method
produces superior rendering results than existing methods.

3.1. Preliminaries

We render the color Ĉ(r) by volume rendering samples xi

whose density and color are (σi, ci) along a ray r and train
the radiance fields RFΘ to predict (σi, ci) from the L1 pho-
tometric error between Ĉ(r) and input image C(r) as it is
more robust against outliers than MSE:

Lrgb =
∥∥∥Ĉ(r)−C(r)

∥∥∥
1
. (1)

To extend NeRF to cover a large scale, we also use the con-
traction equation [2] over sample points:

contract(x) =

{
x ∥x∥ ≤ 1(

2− 1
∥x∥

)(
x

∥x∥

)
∥x∥ > 1

, (2)

Using the contraction function in radiance fields, which
maps world coordinates onto a contracted space, aids in
large-scale view synthesis by focusing nearby regions while
representing distant components [26, 44]. However, they
face challenges in long camera trajectories due to static
model allocation.

Our approach uses multiple TensoRFs [8] to per-
form view synthesis and camera registration from
videos, following LocalRF [26]. We allocate a NeRF
block RFΘm

, where m ∈ {1, · · · ,M}, and insert in-
put frames Ck with the corresponding camera poses
[R | t]k, k ∈ {1, · · · ,K} into a temporal window Wm ={
(Cw(m,1), [R | t]w(m,1)), · · · , (Cw(m,N), [R | t]w(m,N))

}
,

where w(m,n) denotes the frame number of m-th win-
dows’ n-th frame. If the distance between the camera
[R | t]w(m,N) and the block center becomes too large, we
stop inserting frames and optimize the block RFΘm

with
the camera poses [R | t]w(m,n) where n ∈ {1, · · · , N}
using Wm. After optimizing a RFΘm block, we create
a new block RFΘm+1 with its window Wm+1 and insert
frames until the end of the videos.

3.2. Bidirectional Optimization by Distant Frames

Previous reconstruction approaches [2, 11, 37, 48] prede-
fine the reconstruction range before optimization and train

(a) Perspective camera (b) Omnidirectional camera
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Figure 2. In the perspective video of marching forward, optimized
radiance blocks RFΘp may not be visible in the frame used to
train current radiance fields RFΘc . However, in omnidirectional
video, every uncontracted space of the optimized blocks can be
seen, enabling effective bidirectional optimization. The boundary
indicates the radiance fields’ focusing region uncontracted.

a single NeRF-based module with registered poses. Lo-
calRF [26] progressively allocates NeRF modules and per-
forms large-scale reconstruction in a local manner without
requiring camera priors. However, the vanilla LocalRF has
limitations in leveraging global information and is suscep-
tible to slowly moving objects that appear stationary from
a local perspective. To overcome these issues, we propose
a novel solution that leverages the omnidirectional nature
of 360◦ view synthesis while taking advantage of locality.
This improves overall reconstruction quality.

As shown in Figure 2, in perspective videos of marching
forward, distant frames contain only a small amount of in-
formation needed to refine poses and radiance fields. This
is inefficient and can lead to instability. However, in 360◦

videos, distant frames contain a substantial amount of data
to refine radiance fields. As a result, we propose a bidirec-
tional optimization by distant frames as part of progressive
optimization, which can globally refine radiance fields and
poses for omnidirectional view synthesis.
Forward step. As we progressively optimize multiple ra-
diance fields RFΘm

, there are RFΘc
that OmniLocalRF

currently optimizes and a group of RFΘp , p ∈ {1, · · · , c−
1}, which are already converged. In LocalRF, RFΘc is
trained only with its temporal window Wc using the pho-
tometric loss defined as:

Lfor
rgb, s =

∑
rsrc∈R

∥∥∥Ĉc(rsrc)−C(rsrc)
∥∥∥
1
, (3)

where rsrc represents a ray from the current window Wc,
limiting the use of global frames. Here we additionally re-
fine RFΘc using prior frames outside Wc and refer to it
as a forward step since it proceeds in the same direction as
window sliding.

As shown in Figure 3(a), to concentrate on the areas
where RFΘc occupies, we render a depth value through
RFΘc at the pixel psrc, the origin of rsrc, on w(c, i)-th
frame, w(c, i) ∈ Wc, and obtain projected pixels pdst to
the w(p, j)-th frame which is a randomly selected member
in Wp but not included in Wc by

pdst = Π
(
[R | t]w(c,i)→w(p,j)Π

−1
(
psrc, D̂c(rsrc)

))
. (4)
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Figure 3. Our bidirectional optimization for omnidirectional videos. (a) In the forward step, we project the point Pc(rsrc) rendered by
RFΘc to the destination frame w(p, j), used to train the previous radiance block RFΘp . We then render the color and depth through
RFΘc and RFΘp , respectively, and use the L1 photometric error between the fully rendered color Ĉc(rdst) and the bilinearly interpolated
input image C̄(rdst) (Eq. (6)) to update RFΘc and a mask module. (b) In the backward step, we switch the source and destination frames
and refine RFΘp through the valid rays from static areas that meet RP.

Here D̂c is a rendered depth value using RFΘc
, and

[R | t]w(c,i)→w(p,j) is the relative camera matrix from
w(c, i)-th to w(p, j)-th frame. Π() denotes the equirect-
angular projection operator, and Π−1() backprojects a pixel
on an equirectangular image to the world space.

We then render a depth value and a color value along rdst
which casts from pdst through RFΘp and RFΘc , respec-
tively. In order to exclusively use the reliable samples, we
choose valid rays which satisfy

RC = {r |(1− T )D̂p(r) ≤ D̂c(r) ≤ (1 + T )D̂p(r), D̂c(r) ≤ 1},
(5)

where D̂p is a rendered depth by RFΘp , and T is the valid
margin of photometric refinement, constant at 0.05. The re-
gions satisfying Eq. (5) are co-visible from two RF blocks.
In cases where static geometry exists, causing occlusion, the
rendering depths between the two RF blocks differ signif-
icantly, preventing the execution of bidirectional optimiza-
tion. We update RFΘc and a mask module from the con-
ventional photometric loss in Eq. (3) with

Lfor
rgb, d =

∑
rdst∈RC

∥∥∥(1− M̂(rdst)
)(

Ĉc(rdst)− C̄(rdst)
)∥∥∥

1
, (6)

where Ĉc denotes a rendered color by RFΘc within RC.
We bilinearly interpolate input color based on the projected
pixel’s coordinates to estimate the color C̄. M̂(r) is the
estimated motion mask of r using the global mask module,
detailed in Section 3.3. RFΘc

additionally uses the static
regions of frames beyond the temporal window to maintain
locality and incorporate richer view information.
Backward step. We illustrate the backward process in
Figure 3(b). We cast a ray from r′src on w(p, j)-th frames,
which is used as the destination frame in the forward step,
and render a depth value with a color value through RFΘp

.
We then supervise the rendered color by the color of the
input frame as:

Lback
rgb, s =

∑
r′src∈R

∥∥∥(1− M̂(r′src)
)(

Ĉp(r
′
src)−C(r′src)

)∥∥∥
1
, (7)

where Ĉp indicates a rendered color by RFΘp
. Unless we

(a) Test view backward(b) No 
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(d) Complete
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Figure 4. Ablation study on the impact of the backward step. (b)
Solely employing the forward step results in a blurred image. (c)
Omitting the utilization of Eq. (7) leads to overfitting on distant
frames. (d) Our bidirectional optimization shows great quality in
representing details.

use Eq. (7), RFΘp
overfits to render distant frames while

distorting adjacent views as shown in Figure 4(c).
We get the projected pixel p′

dst on w(c, i)-th frame as
follows:

p′
dst = Π

(
[R | t]w(p,j)→w(c,i)Π

−1
(
p′

src, D̂p(r
′
src)

))
, (8)

where the source and destination frame are reversed in
Eq. (4). We render a color with a depth through RFΘp

and also render a depth value using RFΘc
at r′dst. The pho-

tometric loss for backward refinement supervises the color
rendered by RFΘp

:

Lback
rgb, d =

∑
r′dst∈RP

∥∥∥(1− M̂(r′dst)
)(

Ĉp(r
′
dst)− C̄(r′dst)

)∥∥∥
1
. (9)

RP denotes the valid ray bundles where the terms D̂c(r)
and D̂p(r) are reversed in Eq. (5), and C̄(r′dst) is a bilinear
interpolation of C(r′dst) based on p′

dst, a pixel origin of r′dst.
During the forward and backward steps, we use rays

from frames close to the target RF block (source frame) and
from frames far away from the block (destination frame).
In this manner, we utilize four photometric loss functions,
Eqs. (3), (6), (7), and (9). Then, Eq. (3) is used to train
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Figure 5. For motion mask prediction, we cast a ray r from the k-th frame and render the static structure Ĉst(r) through volume rendering
using radiance fields RFΘ. We extract multi-resolution features of normalized (u, v) by traversing feature plane set Zk and concatenate
them into a single code zk(u,v). We estimate dynamic color Ĉdy(r) and motion mask M̂(r), and render the final results Ĉ(r) through
dynamic compositing (Eq. (10)). We jointly update the mask module (Zt, FΘD ) with radiance fields RFΘ using L1 photometric loss. We
supervise Ĉdy(r) by C̃(r) for unique factorization (Eq. (11)) and regularize the alpha of the mask (Eq. (12)).

RFΘc through both dynamic and static regions of the close
frame. In this process, geometrically inconsistent areas are
mapped to the mask module as dynamic objects. Eq. (6) re-
fines RFΘc

by far frame that have been used to train RFΘp
.

As we already obtained the motion mask, we use only in-
formation from static regions to minimize the intervention
of dynamic objects while refining. We also apply this ap-
proach in the backward step, exclusively updating static re-
gions during additional refinement of RFΘp

(Eqs. (7), (9)).
Through this way, the overlapped regions in RFΘc

and
RFΘp

are refined concurrently using distant frames.

3.3. Motion Mask Prediction

We use a set of neural feature planes for each frame to es-
timate a motion mask. To do so, we decode a feature code
from a multi-resolution feature plane. Our mask module is
compatible with a pixel-wise ray marching NeRF setup and
can be optimized jointly while rendering static objects. Fig-
ure 5 provides an overview of our motion mask prediction.

Mask module architecture. We leverage a Bayesian
learning framework for segmenting dynamic components
inspired by DynIBaR [22] that combines IBRNet [49]
with 2D CNN. We create a low-resolution equirectangu-
lar feature plane set Zk for each frame to handle del-
icate frame-dependent components. The feature plane
set comprises multi-resolution planes, denoted by Zk ={
Z1

k ,Z2
k , · · · ,ZL

k

}
, where the height of each plane is hl

k =
h0
k/2

l−1, with l ∈ {1, · · · , L}. This approach follows pre-
vious works [12, 30, 42, 47] that have shown better spatial
context-aware inference under a multi-resolution manner.
We use 4 feature channels, h0

k = 128, and L = 4 for all
our experiments.

To render an omnidirectional image, a camera ray r
is generated by multiplying the camera matrix with an
equirectangular backprojected ray from pixel p(u, v) on the
k-th frame. Before casting a ray from p, we interpolate
multi-resolution features at normalized (u, v) by traversing

Zk and concatenate L levels of features into a single code.
We use a global, shallow, multi-layer perceptron (MLP)
FΘD

to decode the feature code and obtain the color of dy-
namic objects Ĉdy(r) with the alpha value of the motion
mask M̂(r) at the ray r.
Motion mask optimization. We compute the final color
Ĉm(r) by compositing dynamic results Ĉdy(r) with static
results Ĉst

m(r), rendered by RFΘm :

Ĉm(r) = M̂(r)Ĉdy(r) + (1− M̂(r))Ĉst
m(r). (10)

We update the mask module, consisting of the feature plane
set and MLP, with radiance fields by propagating the L1
photometric loss of rendered colors (Section 3.2).

The mask blended dynamic color in Eq. (10) has a vari-
ety of combinations of a mask and a dynamic color. When
transient components have an intermediate alpha value due
to the ambiguity in factorization, radiance fields try to com-
pensate residuals and leave floating artifacts. Therefore, we
supervise a dynamic color by Gaussian noise added input
color C̃(r):

Lmask
rgb =

∑
r∈R

∥∥∥Ĉdy(r)− C̃(r)
∥∥∥
1
, (11)

which ensures a unique factorization while preventing our
model from relying on the mask module to express fine de-
tails. We regularize the motion mask by the total variation
(TV) loss and the binary loss for forcing the mask converged
into a binary value while smoothing it as:

Lmask
reg = Lmask

TV + Lmask
bin . (12)

Refer to the supplementary material for details on the mask
regularizers.

3.4. Progressive Optimization

We optimize RFΘ blocks, camera poses, feature plane sets,
and mask MLP by sliding a window over the input video.



We insert frames into the window and optimize poses us-
ing RFΘc (Eq. (3)). If the poses fall outside the contrac-
tion range of RFΘc

, currently targeted radiance field, we
move to the refining step. In the refining step, we perform
bidirectional optimization by simultaneously updating the
RFΘc and the randomly selected RFΘp that has been pre-
viously optimized. We use LocalRF’s optical flow loss and
normalized monocular depth supervision for robust pose es-
timation. To render novel views, we search for the nearest
frame from the given viewpoints. If a frame is used to train
two adjacent radiance blocks, we blend the results based on
their position among overlapped frames.

4. Experimental Results
Our method takes 12 hours for 125 frames on a machine
equipped with a single NVIDIA A6000 GPU and an Intel
Xeon Silver 4214R 2.40 GHz CPU with 256 GB RAM. Re-
fer to the supplemental material for further implementation
details. To evaluate OmniLocalRF in large-scale view syn-
thesis from 360◦ videos, we compare our approach against
Mip-NeRF360 [2] and EgoNeRF [11], known for strong
performance in omnidirectional view synthesis. Addition-
ally, we also compare our approach with D2NeRF [54] and
RobustNeRF [37], both of which aim to reconstruct static
structures from dynamic videos. Since these methods re-
quire precomputed camera pose, we utilize the pose esti-
mated by OpenVSLAM [40] as camera priors. We also
compare ours with LocalRF [26] that self-calibrate poses
during view synthesis. For a comprehensive comparison,
we evaluate both LocalRF and our method under two condi-
tions: one with camera priors provided for pose refinement
and the other without camera priors, starting from scratch
and estimating the poses during view synthesis.

4.1. Dataset and Metrics

We capture and provide a new dataset from six outdoor
scenes captured with an Insta360 camera, consisting of
5760×2880 resolution 30 fps 360◦ videos each. These
are casual videos designed to capture backgrounds that in-
clude a photographer and dynamic objects like pedestrians.
Considering reasonable training time and memory size, we
use half-resolution input images. However, in the case of
D2NeRF, we have to use a quarter of the spatial resolution
for rendering due to GPU memory constraints of 48 GB. We
use a total of 125 images, taking every fourth frame from
the first 500 frames. Test frames are selected for every tenth
frame among 125 images, including the first image, result-
ing in 112 training images with 13 test images. For all test
images in every scene, we manually create motion masks
for validation. We then compare the rendered results with
the dynamic objects masked ground truth and report PSNR,
SSIM [50], and LPIPS [55]. We also measure weighted-
to-spherically uniform PSNR and SSIM [41] (PSNRWS and

Ground truth Mip-NeRF360 Ours
Figure 6. Masked results for evaluation in the real dataset. We
manually create motion masks for the test views and compute
the metrics after inpainting masked regions with gray. While our
method masks the dynamic areas robustly, conventional neural
rendering methods still exhibit residual artifacts due to temporal
and spatial inconsistency.

SSIMWS), taking into account the distortion near the pole in
equirectangular images.

We generate three synthetic 360◦ videos, each contain-
ing dynamic objects floating within the scene for evaluating
pose estimation accuracy by absolute trajectory error (ATE)
and relative pose error (RPE) between ground truth poses
as standard visual odometry metrics [20, 39, 56]. The syn-
thetic videos have a resolution of 2880×1440, consisting of
125 images each. Out of these, 13 images are allocated for
testing, following the procedure used with the real dataset.
Additionally, we provide view synthesis results of existing
methods and our method for comprehensive comparisons.

4.2. Quantitative Evaluation

Dynamic objects in test images are excluded using manu-
ally created masks when computing metrics. As both Lo-
calRF and our method can estimate camera poses during
view synthesis, we present the metrics for models trained
with and without preprocessed camera poses by OpenVS-
LAM [40]. According to Tables 1 and 2, scalable models
like Mip-NeRF360, EgoNeRF, and LocalRF showed rela-
tively high performance. D2NeRF and RobustNeRF, which
target reconstructing static structures from dynamic videos,
achieve lower scores due to a limited model capacity. To en-
sure fair comparisons, we exclude the transient data of test
views. However, dynamic objects frequently appear outside
the masks as artifacts, leading to a decrease in the metrics,
as illustrated in Figure 6. As a result, our method outper-
forms existing methods thanks to its effective dynamic ob-
ject removal and locality even without given camera poses.

4.3. Qualitative Evaluation

In Figures 7 and 8, we conduct a qualitative comparison of
our OmniLocalRF with the baseline methods. Our method
effectively mitigates ghosting artifacts while preserving lo-
cality, allowing us to represent details in large-scale real-
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Figure 8. Qualitative comparisons on the real dataset. Our method can render locally unobserved areas with fine details throughout the
bidirectional optimization with a self-supervised mask module. D2NeRF sometimes encounters challenges in distinguishing between static
backgrounds and dynamic objects, which results in the omission of certain regions in the Library scene. Refer to the supplemental video.

Table 1. Quantitative comparisons of the synthetic dataset. The
averages of the metrics are measured across three synthetic scenes.
Refer to Figure 7 for qualitative comparisons.

PSNR ↑ PSNRWS ↑ SSIM ↑ SSIMWS ↑ LPIPS ↓
Mip-NeRF360 [2], static only 29.48 29.85 0.8625 0.8628 0.2699
Ours wo/ pose, static only 30.29 30.24 0.8679 0.8681 0.2561
Mip-NeRF360 [2] 25.59 25.32 0.8455 0.8464 0.2973
EgoNeRF [11] 23.99 23.67 0.8044 0.7951 0.3949
LocalRF [26] w/ pose 25.50 25.31 0.8454 0.8427 0.2897
D2NeRF [54] 19.91 19.43 0.6212 0.5929 0.6298
RobustNeRF [37] 20.59 19.79 0.7326 0.7096 0.4734
Ours w/ pose 29.76 29.68 0.8633 0.8628 0.2624
LocalRF [26] wo/ pose 25.22 25.02 0.8389 0.8354 0.2949
Ours wo/ pose 29.93 29.85 0.8648 0.8648 0.2610

Table 2. Quantitative comparisons of the real dataset. We report
the averages of the metrics measured across six real scenes. Refer
to Figure 8 for qualitative comparisons.

PSNR ↑ PSNRWS ↑ SSIM ↑ SSIMWS ↑ LPIPS ↓
Mip-NeRF360 [2] 26.88 26.44 0.8094 0.7977 0.3585
EgoNeRF [11] 25.95 25.38 0.7609 0.7424 0.4383
LocalRF [26] w/ pose 26.56 26.22 0.8041 0.7966 0.3471
D2NeRF [54] 20.95 20.34 0.6105 0.5829 0.5100
RobustNeRF [37] 20.78 19.56 0.7093 0.6679 0.4864
Ours w/ pose 27.72 27.09 0.8171 0.8085 0.3299
LocalRF [26] wo/ pose 26.56 26.23 0.8034 0.7984 0.3410
Ours wo/ pose 27.73 27.13 0.8165 0.8088 0.3297

world data, even in locally occluded regions. Methods like
EgoNeRF, Mip-NeRF360, and LocalRF, which lack dy-

namic handling, face challenges when reconstructing static
scenes, relying solely on geometric consistency across in-
put data. Even though their masked metrics indicate high
performance, these methods suffer from ghosting artifacts,
making them less suitable for practical applications that de-
mand high-quality static view synthesis.

Since D2NeRF parameterizes radiance along spatial and
temporal domains with a single NeRF module, it often
fails to separate dynamic components. It renders blurry
results because of the large spatial and time complex-
ity of input videos. RobustNeRF employs the iteratively
reweighted least squares (IRLS) approach for patch-wise
outlier down-weighting, which decouples transient artifacts
from geometrically consistent structures through adaptive
loss reweighting. However, in the omnidirectional videos,
the overall geometry reconstruction quality is compromised
due to the large scene scale, making it challenging to distin-
guish static from dynamic objects based on the photometric
error over patches. For a fair comparison, we additionally
train RobustNeRF for twice the number of iterations com-



Input video

Figure 9. An example of pose comparisons on the Pavillion scene
including dynamic objects. Our method shows robustness in esti-
mating camera pose in the presence of dynamic objects.

Table 3. Comparisons of pose accuracy on the synthetic dataset.
We average the results from three scenes.

RPEr ↓ RPEt ↓ ATE ↓
OpenMVG [29] 0.10761 0.01799 0.00218
LocalRF [26] 0.10404 0.00096 0.00376
Ours 0.10398 0.00081 0.00165
OpenMVG [29], static only 0.10706 0.01796 0.00187
LocalRF [26], static only 0.10398 0.00071 0.00208
Ours, static only 0.10399 0.00074 0.00165

pared to Mip-NeRF360, taking into account the slowdown
caused by the IRLS approach, but still fail to represent fine
details effectively.

4.4. Pose Estimation Comparison

We compare our method with OpenMVG [29], an SfM-
based pose estimator, and LocalRF in Figure 9. We re-
port the relative rotation error (RPEr), relative translation
error (RPEt), and ATE. We also estimate the camera trajec-
tories from the ground truth videos to eliminate the influ-
ence of dynamic objects. We align the estimated pose with
the ground truth, addressing scale factor and rotation dis-
crepancies, before computing ATE. As shown in Table 3,
the pose optimized through our approach is robust in the
presence of dynamic objects, showing similar results in the
static-only videos.

4.5. Ablation Study

We conduct an ablation study for our proposed mask mod-
ule and bidirectional optimization: (a) Removing Eq. (6)
degrades overall quality as the local blocks use fewer in-
put images for training. (b) The omission of source rays’
photometric supervision during the backward step (Eq. (7))
significantly degrades the model as it tends to converge on
reconstructing distant regions as described in Figure 4(c).
(c) We observe that incorporating distant frames through the
backward step enables the model to capture and refine de-
tailed information. (d) Geometrical inconsistencies in the
temporal domain of dynamic objects often lead to the intro-
duction of larger artifacts compared to the regions masked
out during test views, as shown in Figure 6. Consequently,
the absence of the mask module adversely affects both the
qualitative and quantitative aspects of the results. (e) The
exclusion of Eq. (3) during mask optimization results in
intermediate alpha values within the motion mask due to
the ambiguity in factorization and leaves floating artifacts,

Table 4. Ablation study results of our model. Reported metrics
are averaged over the six scenes on our real dataset (Section 4.5).

PSNR ↑ SSIM ↑ LPIPS ↓
(a) No forward step 27.64 0.8127 0.3356
(b) Backward step w/o Lback

rgb, s 26.23 0.7800 0.3866
(c) No backward step 27.63 0.8086 0.3447
(d) No mask module 26.08 0.7876 0.3630
(e) No mask photometric supervision 25.27 0.7894 0.3593
Complete model 27.73 0.8165 0.3297

which yields lower metrics than the entire model. Table 4
quantitatively compares results.

5. Discussion and Conclusions
We have presented OmniLocalRF, a novel method for om-
nidirectional view synthesis in dynamic 360◦ videos. Our
approach integrates LocalRF with a mask module and bidi-
rectionally refines distant NeRF blocks to remove dynamic
artifacts and fill in occluded regions, resulting in accurate
static structure reconstruction while preserving fine details
within large scenes. Our method also accurately estimates
camera trajectories during view synthesis, making it suit-
able for various applications such as street viewers and aug-
mented reality environments.

Our model can synthesize static structures from 360◦

videos without motion masks and camera priors. How-
ever, it faces the usual challenges associated with neural
rendering-based view synthesis. For instance, it is unable to
inpaint regions that are completely occluded in the videos
because NeRF-based models are trained using photomet-
ric loss between input images. To overcome this limita-
tion, incorporating perceptual loss [28] or generative mod-
els [34, 52], such as stable diffusion, can be helpful.

We use linear interpolation in equirectangular space,
which has grids with the same size of zenith and azimuth an-
gles, to predict motion masks. Operating in this space can
mitigate data redundancy compared to utilizing an undis-
torted cube map. However, this space can lead to inefficient
oversampling near polar regions in mask predictions. To ad-
dress this issue, we could use uniformly sampled spherical
grids in future works.

Even though our model globally refines the local blocks
based on photometric error, we do not deal with the global
bundle adjustment and loop closure for pose estimation,
which are used in completed SLAM systems. Adding these
components to our approach would enable more robust and
accurate pose estimation. While our model is capable of
generating static structures from 360◦ videos, it faces sev-
eral challenges that require further refinement.
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