Multiview Image Completion with Space Structure Propagation

Supplementary Materials

Seung-Hwan Baek Inchang Choi Min H. Kim

Korea Advanced Institute of Science and Technology (KAIST)

Comparison

Multi-Image Completion

View #4

Sec. and

View #3

Input color images and depth maps

View #4

View #3

Our completion results

View #4

View #3

Wang et al. (stereoscopic completion)

Not applicable

Not applicable

View #4

Not applicable

Not applicable

View #5

Not applicable

Photoshop (content-aware fill)

View #2

View #3

Input color images and depth maps

View #2

View #3

Our completion results

View #2

View #3

Wang et al. (stereoscopic completion)

Photoshop (content-aware fill)

View #2

View #3

Input color images and depth maps

View #2

View #3

Our completion results

View #2

View #3

Wang et al. (stereoscopic completion)

Photoshop (content-aware fill)

Input color images and depth maps

Our completion results

Wang et al. (stereoscopic completion)

Photoshop (content-aware fill)

Comparison

Stereo Image Completion

View #2

Input color images and depth maps

Image courtesy of Scharstein et al. [2

View #2

Our completion results

Image courtesy of Scharstein et al. [2]

View #2

Wang et al. (stereoscopic completion)

Image courtesy of Scharstein et al. [2]

View #1 (original view)

Not applicable

Not applicable

View #2

View #1 (original view)

Photoshop (content-aware fill)

Image courtesy of Scharstein et al. [2

Input color images and depth maps

Image courtesy of Scharstein et al. [2

View #2

Our completion results

Image courtesy of Scharstein et al. [2]

View #2

Image courtesy of Scharstein et al. [2]

Wang et al. (stereoscopic completion)

Photoshop (content-aware fill)

View #2

Intermediate Results

Our RGB-D Image Completion (Single Image)

Input color image

Completed color image

Input depth map

Completed depth map

Image courtesy of Kim et al. [3

Input color image

Completed color image

Input depth map

Completed depth map Image courtesy of N. Silberman et al. [4]

Intermediate Results

Our Depth Denoising

Completed color image

Reconstructed depth w/o depth denoising

Valid depth samples afte r superpixel filtering Denoised depth

Intermediate Results

Structure Propagation

Input color images

Intermediate structure guides

Image completion results

Parameter Evaluation

Structure Propagation (parameters l_s and l_e)

Structure guide

We handle the errors of structure guide by controlling the parameters l_s and l_e in Equation (6).

Parameter Evaluation

Number of Iterations (parameter *N*)

Input color images

 2^{nd} iteration (N=2 in Algorithm 2)

Parameter Evaluation

Number of Source Images (parameter *M*)

Number of source images (*M* in Section 4)

Image Sources

- [1] C. Olsson and O. Enqvist, Stable structure from motion for unordered image collections, Image Analysis, 2011
- [2] D. Scharstein et al., *High-resolution stereo datasets with subpixel-accurate ground truth*, Pattern Recognition, 2014
- [3] Kim et al., *Scene reconstruction from high spatio-angular resolution light fields*, TOG, 2013
- [4] N. Silberman et al., Indoor segmentation and support inference from rgbd images, ECCV, 2012