

Related Work	<u>≜(I)C</u> L
 Local Adaptation Models*: 	
 Compress only high freq. or gradients in HDR considering spatial relationship with neighbori 	images ng pixels
 Pros: strong compression of dynamic range, . 	
 Cons: computational cost - considerable (5see 1M px), halo or banding artifacts, 	c~2min for
 Global Adaptation Models*: 	
 Manipulate tone reproduction curve non-linea 	rly
 Pros: efficiency (≤3sec for 1M px), no artifacts 	5,
 Cons: performance of compression is more of by simplicity of algorithm, 	iten limited
e.g., too dark or too bright results	
4 * Refe	erences on paper

